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Data analysts today have at their disposal a seemingly endless supply of data and 

repositories hence, datasets from which to draw. New datasets become available daily 

thus making the choice of which dataset to use difficult. Furthermore, traditional data 

analysis has been conducted using structured data repositories such as relational database 

management systems (RDBMS). These systems, by their nature and design, prohibit 

duplication for indexed collections forcing analysts to choose one value for each of the 

available attributes for an item in the collection. Often analysts discover two or more 

datasets with information about the same entity. When combining this data and 

transforming it into a form that is usable in an RDBMS, analysts are forced to deconflict 

the collisions and choose a single value for each duplicated attribute containing differing 
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values. This deconfliction is the source of a considerable amount of guesswork and 

speculation on the part of the analyst in the absence of professional intuition. One must 

consider what is lost by discarding those alternative values. Are there relationships 

between the conflicting datasets that have meaning? Is each dataset presenting a different 

and valid view of the entity or are the alternate values erroneous? If so, which values are 

erroneous? Is there a historical significance of the variances? The analysis of modern 

datasets requires the use of specialized algorithms and storage and retrieval mechanisms 

to identify, deconflict, and assimilate variances of attributes for each entity encountered. 

These variances, or versions of attribute values, contribute meaning to the evolution and 

analysis of the entity and its relationship to other entities. A new, distinct storage and 

retrieval mechanism will enable analysts to efficiently store, analyze, and retrieve the 

attribute versions without unnecessary complexity or additional alterations of the original 

or derived dataset schemas. This paper presents technologies and innovations that assist 

data analysts in discovering meaning within their data and preserving all of the original 

data for every entity in the RDBMS. 
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Chapter One – Introduction 

 

 

 

Data analysis systems that rely on traditional structured data stores restrict the 

choice of values for the attributes of an entity or observation to a single value. 

Assimilating data from multiple data sources requires analysts and scientists to discard all 

alternative values in the data. Traditional systems, based on relational database stores, 

require restricting input data sets or portions of data, or even records or groupings from 

the data to form a single declarative dataset upon which to conduct their analysis. This 

restriction is especially difficult when data is gathered from more than one source. The 

combined data is often a tangle of conflicting observations and facts about the entities the 

data describes.

1

 This progression proceeds to the choice of attribute values for a given set 

of attributes for a data relation. That is, analysts and scientists are forced to choose one 

value for each attribute for a given entity in a relation when there are collisions in the 

incoming data.  

Analysts and scientists who are faced with this dilemma ponder questions such as, 

What is lost by discarding all other assimilated values for the sake of one value? Is there 

meaning in the relationships of the other values, both among them and to other data? 

What can be gained from studying the variances in the data? How has the data changed 

                                                

1

 Some would say that the data contains entities. The author contends the data describes entities. This is a 

subtle and often overlooked discrepancy, which will become profound once the concept of data versioning 

is introduced. 
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over time? Analysis of the discarded values of the collisions is not possible without the 

ability to store multiple values of the data attributes. 

The analysis of complex datasets requires the use of specialized algorithms and 

storage and retrieval mechanisms to identify, deconflict, and assimilate variances of 

attributes for each entity encountered. These variances, or versions of attribute values, 

contribute meaning to the evolution and analysis of the entity and its relationship to other 

entities. A new, distinct storage and retrieval mechanism will enable analysts to 

efficiently store, analyze, and retrieve the attribute versions without unnecessary 

complexity or changes to the original or derived dataset schemas. 

 

1.1 Background 

Not long ago, developers viewed the data that a system consumes and produces as 

simply input and output – largely an afterthought. Development practices have 

progressed beyond that limited viewpoint and now consider data as the central element in 

the development effort. Researchers in the field of software engineering, specifically 

software quality and usability, have gained many advances in technology and 

methodology with this philosophy. Unfortunately, when faced with systems that combine 

many disparate and duplicated data repositories, some developers take this mantra a bit 

too far.  

Developers and major stakeholders at the start of a project, before analysis of the 

requirements has begun, often proclaim, "What we need is a large database that…" Sadly, 

these proclamations are often misguided and lead to systems that are cumbersome, with 
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lengthy development schedules and complex databases that few understand and fewer 

fully exploit. Nowhere is this mindset more prevalent than in the Department of Defense. 

Many of the projects involving systems that ingest data from multiple sources attempt to 

solve the data ingestion problem by building the solution around a poorly or inadequately 

designed database. 

This practice invariably leads to stove piping – a process that provides a solution 

for a single analytical perspective while failing to create a solution that applies to the 

entire problem domain. It is difficult to build a new analysis area from a set of disparate 

data repositories. The developer would spend more time fitting the data together, 

resulting in yet another stovepipe. 

The number and diversity of the incoming data in modern systems requires a new 

approach to dealing with data. Systems can no longer afford to be developed with this 

"Mother of all Databases" (MOADB)

2

 philosophy. Unfortunately, the debate over the 

MOADB philosophy is often a classic Paul vs. Feyd

3

 clash [Herb65] with the user of the 

system becoming the innocent bystander and the data (database) becomes the ultimate 

casualty. Fortunately, system architects are now considering data an actor

4

 in the system 

and thus a key component of the design. Thus, the actor can interact with and be acted on 

by the system.  

Analysts and scientists have at their disposal a seemingly endless supply of data 

and repositories from which to draw. New repositories become available daily making 

                                                

2

 Pronounced "Maud'Dib." With apologies to Frank Herbert and Maud'Dibs everywhere.  

3

 Again, apologies to Frank Herbert.  

4

 Borrowing from the Unified Modeling Language entity of the same name.  
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the choice of which repositories to use more difficult. Furthermore, traditional data 

analysis has been conducted using structured data repositories such as relational database 

management systems (RDBMS). These systems, by their nature and design, prohibit 

duplication of indexed collections forcing analysts to choose one value for each of the 

available attributes for an item in the collection.  

Today’s global economy and global communication age, hastened by the 

explosive adoption of the Internet, has made a great deal of data available that would 

never have been obtainable in the past. Individuals, corporations, analysts, and scientists 

can now glean more and more data from a growing variety of sources. No longer is there 

a lengthy and expensive period during an analysis project where data is hunted down and 

gathered. The abundance of data available for some projects becomes the inverse 

problem of having too much data to consume in a reasonable timeframe. 

Furthermore, as the last two decades have shown, individuals, corporations, 

analysts, and scientists have invested in highly sophisticated enterprise applications 

[ESRI00] and customized analysis products [Paul02]. These systems are often built to 

accommodate a structured data format in the form of a relational database. The real effort 

then becomes formatting the data into the correct layout in order to be consumed by the 

analysis application. 

Often analysts discover two or more repositories with information about the same 

entity. When combining this data and transforming it into a form usable in an RDBMS, 

analysts are forced to deconflict the collisions and choose a single value for each 

duplicated attribute containing differing values. This can be complicated if the data does 
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not have common attributes, making matching data between data sets difficult. This 

process has become the source of a considerable amount of guesswork and speculation on 

the part of the analyst [Raso01]. 

Deconfliction, the assimilation and removal of conflicts, of data is expensive. It 

requires large amounts of time and resources to conduct thoroughly. Although some 

automation applications can be created to lesson the burden, it has become too costly to 

deconflict and reformat the data [Hern95].  

Among the issues concerning deconfliction is the desire to assimilate the data in a 

manner that preserves the meaning of the data. If meaning is lost, the data no longer 

accurately describes the real world and thus can no longer be considered reliable. 

What is lost by discarding those alternative values? Are there relationships 

between the conflicting repositories that have meaning? Is each repository presenting a 

different and valid view of the entity or are the alternate values erroneous? If so, which 

values are erroneous? 

A solution is necessary to overcome these burdens and provide analysts and 

scientists with the ability to save all variants of the data – at the attribute level – to 

preserve the meaning of the data, both inferred and implied. This solution would allow 

the storage and retrieval of data through the intersection or exploitation of all of the 

variants, or versions, of the data. Thus, it would be possible to produce a dataset that is 

based on certain views of the data, be that based on the source, some quality (attribute) of 

the data, a historical or temporal perspective, and so on. The cost of performing data 

deconfliction could therefore be reduced to the time it takes to form queries of the data, 
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rather than a lengthy process of choosing subsets of the data to save and discarding the 

rest. 

 

1.2 What is Data Versioning? 

There are many views of what it means to store versions of data. Views ranging from 

analogies with ‘variant’ [Chatt04] to analogies with ‘alternative’ [Elma93] are presented 

and argued among the leaders in the fields of temporal databases [Gadi88] and document 

management [Varz98]. In fact, the word versioning is often misused and overvalued. This 

section presents the accepted meaning of the phrase ‘data versioning’ and establishes its 

scope within the confines of this work. 

 

1.2.1 Definition of Versioning 

The Merriam-Webster Dictionary defines the word version as: 

Version 

1: a translation from another language; especially: a translation of the 

Bible or a part of it 

2: an account or description from a particular point of view especially as 

contrasted with another account  

3: an adaptation of a literary work <the movie version of the novel> 

4: an arrangement of a musical composition 

5: a form or variant of a type or original <an experimental version of the 

plane> 
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This work considers the second and fifth forms of the definition with emphasis on 

the fifth form. That is, a version is a variant of a type or original data value. This variant 

is therefore no more or less important or valid than the original. Only the originator or 

viewer of the data can make the determination of which is lesser or greater in the context 

of the data and its use. 

 

1.2.2 Versioning Explained 

Versioning is the process of storing variants of data. Each variant of the data can 

have a number of additional properties that can be used to determine the source or even 

validity of the data. These additional properties form metadata about the variant itself. 

The combination of the variant value and its metadata become what this work refers to as 

a version of the attribute. 

 

Attribute Value Source_Id Reliability Confidence 

Height 100 98 Low Low 

Height 105 99 High Medium 

Table 1-1: An Example Set of Versions 

 

 

Table 1-1 depicts an example of this philosophy at work. In this example, there 

are two values for the height attribute. It is assumed this data describes the same entity. 

Thus, the possible values for the height attribute are 100 and 105. If the source identified 

by the sentinel key of 98 is chosen or required to be the default value, the value of the 

height attribute for the referenced entity could be set to 100. Notice that the source 

identified by the sentinel key of 99 is of higher reliability and confidence. Thus, with 

some simple queries, one could determine that a more accurate height of the entity is 105. 
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Reliability is the qualitative assessment of accuracy. Confidence is the qualitative 

assessment of validity. 

However, there may be additional restrictions that would not permit the use of one 

or more of the sources – be that for legislative, declarative or other impenetrable forces of 

nature

5

. One could still conduct analysis first without using the prohibited sources and 

then again with the prohibited sources and compare the results. The result could then be 

used to measure the validity or accuracy of the analysis. 

This scenario has many real-world applications such as the predictive nature of 

financial futures. If a brokerage had the ability to substitute all types of data it acquires, 

be they speculative or historical, the financial analysts could plan their investments much 

farther into the future and be able to adapt accordingly as the data changes. They could 

also use the ability to track changes over time and analyze the effects of unobvious 

relationships among the data. 

This concept, albeit simple and without mystery, is fundamental in understanding 

the power of a system that can store and process versions of data. This concept can give 

analysts and scientists the ability to determine the reliability, confidence and source of the 

information of an assimilated dataset in a timely manner. Furthermore, this concept can 

also provide the ability to manipulate that data to form alternative views of the data by 

limiting the source of the data. It would then be possible for corporations and 

organizations to present unique views of the data based on the recipient of the data or 

                                                

5

 Such as analyst preference, scientific, or philosophical bias.  
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product as well as adapt to a changing world without having to lose the historical 

relationships among the data. 

 

1.2.3 Ship of Theseus – Version ad Infinitum 

Versioning the data will quickly become a question of originality. The concept of 

originality has been debated by philosophers for centuries. One such example is the 

philosophical concept of the Ship of Theseus [Cohe04].  

Theseus’ ship was preserved by the Athenians during the lifetime of Demetrius 

Phalerius, a student of Aristotle, ca. 350-280 BC. Over the years, as each plank of the 

ship deteriorated,

6

 the Athenian historians replaced the plank with a new one. Over time, 

it became apparent that all of the planks and bits of wood had been replaced. The 

question raised was, “Is this the ship of Theseus or just a very good copy?”  

Another version of this puzzle is presented where Theseus sails from Athens 

towing a second ship full of lumber. During a prolonged voyage and many hardships, the 

crew was forced to replace every part of the ship. The questions this puzzle raises are, 

“How many ships did Theseus depart with?” and “How many ships did he arrive with?” 

Yet another version of the puzzle is presented where Theseus sails from Athens 

with a cargo of spare parts

7

 towing behind a smaller vessel containing a crack crew of 

shipbuilders. As the parts on the original ship were replaced, the old parts were thrown 

overboard; the shipbuilders trailing behind salvaged the parts and reassembled them. This 

                                                

6

 Presumably f rom the growing pollution caused by the chariot expressway and tourism.  

7

 Figuratively speaking. The concept of uniform manufacture was not invented until many centuries later.  
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puzzle raises a number of questions. Is the ship that Theseus arrives in the same as that he 

sailed from Athens? Which ship is the original and which is the copy? 

These puzzles apply to the data-versioning concept. How many versions of the 

data need be replaced before the data is no longer the original data? How do we 

determine equivalence (in meaning) of a version to the original data? If the version is 

equivalent to the original is it a version or a copy? If we can not say the version is 

equivalent, what does that say about the version – is it a new entity or truly an alternative 

form of the same entity? Quantitatively, the question of how many versions can be 

answered simply by counting the combination of the available attribute versions and the 

original attributes. Once all of the attributes have been “replaced,” the data is no longer 

the original data.  

Furthermore it can be argued that the combination of versions generate uniquely 

original entities. That is, no matter how many attributes are replaced, the resulting entity 

is a unique instance and thus not the original at all. For example, consider a case where 

the attributes of an entity change over time. With each observation stored, the resulting 

change is a new state for the original entity and therefore can be considered a new 

instance of the same entity. Conversely, it can be argued that the data from which the 

versions were drawn have equal value to that of the original values and that as long as the 

relationship between the entity and its versions are maintained, the data is still original no 

matter how selective the versions, which is precisely the premise on which this work is 

based. It is a matter of evaluating the new attributes in a qualitative manner – the 
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interpretation of the applied attribute versions can mean to some a new entity and to 

others the same entity. 

Some have argued that as long as the keel of the ship remains intact, the two ships 

are the same and that there has been no transference of originality. The same can be said 

about data versioning. At what point does the data lose its originality? Can one create so 

many versions of the data that the data has lost its meaning? Is it possible that storing 

every alternative value encountered becomes akin to never throwing away anything 

because it might be useful one day?

8

 

Whereas this conundrum can be argued for many sessions and from many views, 

this work attempts to eliminate what can be called “The Theseus Factor” – the versioning 

of the data to the point of duplication – by permitting the storage of the alternate value, 

metadata, and its relationship to the entity with each version. The relationship of the 

version and its metadata to the original entity identifies the firmament of the data and 

therefore becomes the “keel” of the data. As long as the keel is never replaced, the data 

(ship) remains the original no matter how many attribute values (parts) are replaced. 

 

1.3 What is Attribute-Level Versioning? 

The motivation for this research is a knowledge engineering project designed to 

combine multiple datasets about a subject area. This solution must be capable of storing 

known associations and relationships among the data, resolving collisions, storing 

                                                

8

 Garages and basements everywhere are piled high with the debris of life by pe ople who never throw 

anything away. Ponderously, most seem to know where everything is no matter how insignificant or small 

the item. 
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collisions among the data attributes as alternative values, analyzing the alternative values, 

and forming a hypothesis from the analysis. The output of this process will be a dataset 

that is the result of a query from the combined data and the versioned attributes. This 

project and the underlying technologies have been named Attribute-Level Versioning 

(ALV)

9

. 

ALV provides a mechanism to store and retrieve all values for an assimilated 

attribute. Having a comprehensive version repository with efficient retrieval mechanisms 

permits analysts and scientists to perform additional analysis using advanced statistical 

and knowledge inference models that identify meaning or infer relationships among the 

data. Adding this new dimension of analysis opens a new chapter in the data-mining 

paradigm. 

 

1.3.1 Definitions 

Some new concepts have been defined in this work. Although most are self 

explanatory, some can be confusing when seen or read among the mass of experimental 

results and theoretical explanations. The following paragraphs define the more commonly 

used terms. The list begins with a clarification of an existing database term. 

An attribute is a property that describes an entity either in part or in whole. An 

entity can have any number of attributes [Date04, Elma03]. 

An attribute value is the value of an attribute given by its domain. 

                                                

9

 The initial concept of ALV was originated in November 2002 by Mr. M. Facemire. His vision of a better 

data versioning me chanism survived the test of time and persevered in the face of apathy. This work is the 

fruition of his vision and the imagination of the author.  
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Attribute value metadata is the additional set of properties that describe, define or 

form the reference for an attribute value. Each attribute can have its own set of metadata 

defined. 

An attribute version is unique set of an attribute value, the attribute value 

metadata and the relationship of the attribute value to the entity. 

A versioned table

10

 is the relation that is being versioned. This is the logical 

representation of the data as presented by the database. 

An attribute version table is the data store that contains all of the attribute 

versions that relate to entities in the versioned table. This becomes the version store for 

the versioning system (ALV). This is the logical representation of the attribute versions 

as presented by the ALV system. 

A version store is the physical store for attribute versions organized into a single 

file and organized using a clustered mechanism. This is the physical storage mechanism 

for an attribute version table. 

 

1.3.2 ALV Requirements 

The ALV project was born from an idea that analysts need to track the source and 

lifetime of data. Tracking the source of information is a relatively intuitive approach that 

can be easily incorporated in a relational database management system (RDBMS) as one 

or more relations with referential integrity between the relation that describes the entity 

                                                

10

 In many instances, the word “table” is synonymous with ‘relation.” Thus, a versioned relation can be 

referred to as the versioned table and vice -versa.  
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and the relation(s) that define the source information. A known system has been created 

to accomplish this for traditional RDBMS implementations

11

. 

There is now a solution that can provide the capability to track data over its 

lifetime (see Chapter 2 for a review of existing technologies) using a variety of attribute 

value metadata. The ALV system is capable of meeting this need and more. The vision 

for the ALV system is: 

 

 Combine disparate data sources with observations on that data that contain 

one or more variances of the values of the attributes within the data. 

 Create sound theoretical methodologies and architectures to manipulate the 

combined data. 

 Form patterns from the data based on links among entities found in the data. 

 Identify gaps in the data and extrapolate the missing data from patterns of 

observations. 

 Form unique views of the data based on an analytical case study. 

 Provide a common process for version analysis 

 Leverage advanced modeling to “Know what we don’t know” 

 Correlate data based on source 

 Corroborate observations  

 Track source, classification, and confidence at the attribute-level  

 Version the data by attribute  

                                                

11

 This system is protected by intellectual property laws. Additional details cannot be disclosed.  
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 Permit a single attribute to have many alternative values (versions) from one 

or more sources 

 Automate identification of duplicate objects 

 Merge duplicate objects 

 Track relationships between suspected duplicate objects  

 Automate identification of data gaps and suspect attributes  

 

There are a number of unique technology achievements in the ALV system.  

 

 Advanced storage and retrieval mechanisms 

 Advanced query mechanisms through the extension of Structured Query 

Language (SQL) for version extraction 

 Advanced index mechanism for fast version retrieval 

 Data mining algorithm applications for version analysis 

 

A complete and thorough description of these technologies and their importance 

is contained in Chapter 3.  

 

1.3.3 Goals 

To be considered a success, this project must be capable of integrating with 

traditional database management systems (DBMS). The goal is to leverage a versioning 

technology from within the DBMS. The technology should become an extension of the 
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DBMS rather than an add-on module or procedural access mechanism. An extension to 

existing technology will allow legacy applications to leverage versioning without having 

to be redesigned or altered. More importantly, this goal will ensure that the output of this 

project can be consumed by legacy applications that rely on database storage.  

Therefore, this project focuses on implementing the solution as an extension to 

the MySQL DBMS which requires adapting the MySQL engine, extending SQL, and 

providing additional tools to manipulate the data prior to and after storage. 

 

1.4 Can Technology Solve the Problem? 

The problem presented in this chapter is one that arises in many application 

domans. The ability to save all pertinent data, whether in the form of archival, historical, 

temporal or even analytical variance, will give data analysts the ability to formulate 

answers to questions such as: 

 

 What did the data look like before an event? 

 How has data changed since an event? 

 Where did the data come from? 

 What correlations exist within the data? 

 How would changing the values of certain attributes affect the outcome of the 

experiment? 
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This dissertation presents four contributions to the fields of database theory, 

knowledge management, and engineering; 1) a physical store for attribute versions, 2) an 

indexing mechanism for versioned data, 3) extensions to SQL and query optimizer, and 

4) application of data mining algorithms to classify the version data. These contributions 

together with the successful implementation of the ALV system will demonstrate that 

ALV is a sound methodology for tracking and maintaining data from many sources. This 

work also presents the applicability of the ALV system to enhance temporal analysis, 

historical archiving, and mining of data stores. However, it is the summation of this work 

in the form of the ALV system that presents the greatest contribution. This system will 

enable analysts and scientist to study data from a new and unique perspective.  

 

1.5 Dissertation Overview 

This dissertation examines the project, solutions, and the philosophy of their creation. 

Chapter 2 presents the result of a literature review. Chapter 3 begins with a detailed 

discussion of the supporting project. Subsequent chapters examine each of the new 

technologies. Topic chapters introduce the area or subdiscipline and discuss the findings 

and arguments encountered during the research, also giving the reader enough 

background information to understand the points being argued. For example, a discussion 

of the social issues regarding data-mining will be limited to presenting the body of 

knowledge for that topic as it applies to the argument at hand rather than introducing the 

common issues and points of view regarding the social impact of data-mining. The final 

chapter will review the research findings and present alternative views of the results of 
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experiments along with areas for future research. The chapter layout is as follows: 

 



 

Chapter 2 – Survey of Existing Solutions, Technologies, and Theory 



 

Chapter 3 – An Introduction to Attribute-Level Versioning Technologies 



 

Chapters 4-7 – Discuss each technology in detail with experiments and results 

with emphasis on: 



 

Thesis statement for creation of the technology 



 

Comparison to existing technologies and theories 



 

Conclusion: Contribution to ALV 



 

Chapter 8 – Summarize use of new technologies and theories in the ALV solution 

applications and present areas for future work. 
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Chapter Two – Existing Solutions, Technologies and Theories 

 

 

 

This chapter encompasses an in-depth search within the academic and commercial 

venues for versioning systems, technologies, theory, and practice related to the ALV 

technologies. Presented is a survey of all applicable areas including, document 

management, relational database, temporal database, object relational database, and 

object-oriented database systems. Sections 2.1 – 2.5 describe each of these areas, 

presenting the viewpoints of the researchers in the area and an overview of the 

technology represented. Each section concludes with a comparison of how the area 

compares to this dissertation, the ALV project, and its technologies. Section 2.6 describes 

a collection of related topics and considerations discovered during the research. Section 

2.7 concludes with a presentation of the application of this research to the dissertation 

work and related project. 

 

2.1 Document Management Systems 

Document management systems (DMS) are systems designed around a persistent 

store of artifacts (documents and document fragments). These documents are often stored 

in smaller blocks of data that are then later combined to form a specific view of the 

document. This technique of storing portions of the document in order to more fully 

manage change and traceability is called “virtual documents” in light of the fact that the 
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document itself is simply a view (filter) of the data (documents) stored. Technology 

research has focused on understanding the system-level requirements of versioning. In 

particular, the questions of how to support alternative versions, configurations, long 

transactions and control access to versions have received substantial attention [Lu96]. 

A DMS is an implementation of an information retrieval system. An information 

retrieval system is one that is designed to represent, store, organize, and access data. The 

objective is to retrieve the information that best fits the user’s need. This is typically 

accomplished using advanced query mechanisms. Information retrieval systems are 

therefore designed to store all forms of information – data that has meaning to the user. 

DMS do not have all of the features normally found in information retrieval systems 

because DMS focus on the management of the document in its original form and changes 

that occur to the document. In a DMS, it is the document that is the item operated on. In 

information retrieval systems, it is the data (information) that is acted on [Rals03]. 

Documents are data that evolve over time. One possible source of evolution 

comes from the modifications made to the content of a document by its author(s). These 

modifications are typically small changes to only a portion of the document content. The 

result is a historical reference as to the state of the document before the change and the 

state of the document after the change – an application of versioning. This reality is 

especially relevant in environments where frequent modifications occur such as 

collaborative authoring environments (each author can propose a series of modifications 

to the global work). Among the different possibilities of applying these modifications to a 

specific document, it is frequent that authors describe these modifications as a new 
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document or residing inside another document. For each modification, the author cites the 

document fragment he/she wants to change and indicates how the selected fragment 

could be modified (eliminating it, substituting it, etc.). The new version obtained by the 

application of these changes is a virtual one, in the sense that the users know it exists, but 

there is no physical copy of it available. The collective conscience of authors, the original 

version, the modified version, and the document containing the modification (which is a 

separate document with its own identity) coexist. This leads to a problem that can be 

stated as follows: "Given an abstract document A and the collection of versions of ΔA 

(also abstract entities), is it possible to apply any number of ΔA’s

1

 to a document version 

to produce yet another version of the document in this library? [Mart02]" 

 

2.1.1 Technologies 

The technology used in DMS is often based on existing storage mechanisms and 

databases such as Microsoft SQL Server

2

, Oracle, and other commercial database 

systems. Some DMS use proprietary storage mechanisms in order to leverage unique 

features or to ensure exclusivity. Most of the current research in DMS technologies is 

concerned with text exploitation, indexing, and document translation and transformation. 

These technologies include XML, XQuery, XPath, XLink, and other newer XML-based 

document handling mechanisms [Anto04]. Many consider documents, or text in general, 

as unstructured and therefore difficult to incorporate in technologies such as semantic 

                                                

1

 ΔA represents a modification that is in the historical chain of the given document. Modifications are 

linked to their original source. One would not arbitrarily apply a modification of any document to any 

other. 

2

 All product names referenced in this document are trademarks of their respective companies.  
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web [Fens03]. Fortunately, a recent effort is underway to incorporate document 

versioning in the semantic web

3

. 

The work that is most intriguing and most related to this work is the management 

of the documents over time. For example, it is of interest to know how the documents are 

altered from one version to the next. Most of the effort related to document versioning is 

concerned with knowing about the fact that two electronic documents are versions of the 

same abstract document. There are four techniques of resolving this issue. 

The first involves saving the original document and the revisions as separate files 

while maintaining links, called revision links, among the related versions [Mart02]. 

Implementation of this technique involves creating two databases that are updated 

simultaneously: the document database and the link database. The main problems with 

this approach are keeping the revision links database up-to-date and conflict resolution 

among multiple authors. 

The second involves using different timestamps of the document fragments 

associated with a record in a database comparing them in order to detect changes that 

reflect the fact that an object has been versioned [Sche03]. This technique can be used 

with object databases and therefore can be considered when modeling documents as 

objects. This solves the problem of two different database stores, but makes the version 

detection and generation more complex. 

The third technique, which has gained considerable attention, is to store the data 

hierarchically (in much the same way as structured XML documents). This is much easier 

                                                

3

 This system is protected by intellectual property laws. Ad ditional details cannot be disclosed.  
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to accomplish if the documents are stored in XML format. In this case, the documents are 

broken down, or shredded [Date04], into the unique individual XML elements (e.g., 

attributes). These elements are then stored as discrete data items in a tree-based 

repository. Each level of the tree represents a specific version of the document. Versions 

are therefore represented as nodes in the tree. Each node represents changes and has 

associated with it metadata tags that facilitate queries about version history or change 

logs. The detection of versions and version resolution is accomplished using tree 

comparisons [Mart02]. 

The fourth and most common method of document versioning is called a version 

control system. These systems maintain a database that stores the selected versions. They 

use query interfaces designed around workflow applications that retrieve the data from 

the database [Mart02]. Most version control systems store only the main, or initial, 

document. Changes are stored as deltas of the original document. The applications of 

deltas to the original document form a version of the document and provide a definitive 

version history. Some version control systems store each successive revision as a separate 

file, thereby allowing for faster retrieval at the expense of storage space [Tuck04]. This 

latter method is the easiest to implement as you simply allow the operating system 

facilities to manage the document save and retrieval. Additional storage and retrieval 

mechanisms are created to save only the metadata concerning the revision creation and 

modification. This additional data is often saved in a relational database or other similar 

storage repository. 
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Another variant of this method is called snapshot versioning where copies of part 

or all of the file system are archived [Soul03]. Each snapshot of the file system represents 

a static copy of the file system, as it existed at the time the snapshot was taken. This 

allows versioning systems to record versions in a real time environment with little or no 

user initiation. Recovery of previous versions is problematic, as it requires restoring the 

snapshot – which contains the entire state of the file system. Restoring a single file to a 

specific revision becomes impractical. The snapshot version method is best used for real 

time systems or systems that must track large numbers of changes to many files (sets of 

files, large files, etc.). 

There is currently additional research being conducted in the application of 

temporal theory to document management systems. One such work incorporates a 

temporal element for storing XML documents [Gran03]. This work encompasses 

research concerning the temporal management of normative texts in XML format. In 

particular, four temporal dimensions (publication, validity, efficacy, and transaction 

times) are used to correctly represent the evolution of norms in time and their resulting 

versioning. This technology introduces a multiversion

4

 data model based on XML 

schema and defines basic mechanisms for the management of normative texts.  

 

2.1.2 Applications 

The primary implementation of document management systems is in the form of 

Computer Aided Software Engineering (CASE) tools, document control systems, 

                                                

4

 Not to be confused with multiversioning, which is a form of version and update conflict resolution for 

distributed databases. 
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configuration management systems

5

, and document collaboration (sharing) systems. 

There are many document management systems available both commercially and 

academically. Examples of these systems include Microsoft SharePoint Portal Server 

[Micr03], IBM Rational Unified Toolset [IBM05], DOORS [Tele05], CORE [Vite05], 

and Interchange

SE

 

[Trid04]. 

Perhaps the most interesting of these systems is Trident System’s Interchange

SE

 

[Trid04]. Interchange

SE

 is an object-oriented information repository designed especially 

for engineering projects. It contains a central repository that stores all of the artifacts for 

an engineering project and provides configuration management tools for managing 

changes to those artifacts. The central repository provides features that provide access 

control at the property (attribute, relationship, and method) level. The technology 

employed to manage change (versioning) is called object versioning. Object versioning 

provides three operations; 1) object copy – permits the copy of any attribute or artifact 

which may be altered to present a new object or unique view of an existing object, 2) 

object clone – permits a duplicate object to link to an existing object, thereby creating 

another instance of the original object, and 3) object perspective – permits the 

presentation of the objects based on the filters applied to the objects in the data store 

(generates views) [Trid04]. 

The object versioning capabilities of Interchange

SE

 are limited to the proprietary 

data repository that is at the core of the system. Trident Systems has no plans to release 

the technology or share its capabilities via subcomponent development. Interchange

SE

 is 

                                                

5

 Although commonly considered as a type of CASE tool, there are configuration management systems that 

have little or nothing to do with software development or engineering.  
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therefore an example of an industry isotropic application that has little or no academic 

merit. 

 

2.1.3 Comparison with ALV 

Although DMS have a concept of versioning, it isn’t the same as that of ALV. 

Versioning in a DMS is simply the tracking of changes to a document element. Tracking 

the changes over time and the application of those changes using views (filters) is what 

produces the version of the virtual document. ALV is designed to track changes of any 

sort and is fully customizable in what data is stored along with the version. This 

additional data, or metadata, permits the storage of pertinent data about the version. This 

data can include traditional temporal or delta information or it could be used to store 

information about the origin and application of the version data itself. ALV therefore is 

more flexible than the technology employed in DMS.  

One form of DMS uses a collision resolution technique that tags the data with a 

timestamp, resulting in a priority queue for either earliest or latest strategy for conflict 

resolution [Trid04]. ALV is more expressive in that the goal is to store all data regardless 

of temporal aspects. Thus collisions are simply choices of versioned data rather than 

duplicate or repeated values. Pure duplicates are supported, but practice is likely to 

exercise a more normal uniqueness constraint. 

ALV is not designed to be used with large blocks of data as are stored in a DMS. 

However, ALV can be used to track changes of data over time. Date metadata tags can be 

assigned to each attribute value and thus permit the inclusion or exclusion of the attribute 
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value in a data query based on the date stored. As mentioned previously, this is an 

example of how the temporal database theory can be applied to ALV. 

Finally, despite the claims of Trident Technology Solutions to have true attribute-

level versioning (object versioning) [Trid04], their Interchange

SE

 product does not, in 

fact, permit attribute-level versioning as defined in this work. 

Although most DMS are not viable solutions for meeting the needs of this work, 

the research presented has shown one significant feature of DMS that has bearing. 

Specifically, the concept of treating the deltas, or changes, of documents as components 

of the original document is analogous to having complex data types as attributes. In fact, 

this concept is prevalent in the ALV system – all attribute values are connected to the 

original record and become meaningless if separated from the collection of versions or 

disassociated with the original entity.  

 

2.2 Relational Database Systems 

A relational database system (RDBS) is a data storage and retrieval service based 

on the Relational Model of Data as proposed by E. F. Codd in 1970. These systems are 

the standard storage mechanism for structured data. A great deal of research is devoted to 

refining the essential model as proposed by Codd as discussed by Date in The Database 

Relational Model: A Retrospective Review and Analysis [Date01]. This evolution of 

theory and practice is best documented in The Third Manifesto [Date00]. 
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The relational model is an intuitive concept of a storage repository (database) that 

can be easily queried, using a structured query language (SQL) that resembles

6

 natural 

language to retrieve, update, and insert data. The relational model has been implemented 

by many vendors because it has a sound systematic theory, a firm mathematical 

foundation, and a very simple structure.  

The data is represented as related pieces of information (attributes) about a certain 

entity. The set of values for the attribute is formed as a tuple (sometimes called a 

record

7

). Tuples are then stored in tables containing tuples that have the same set of 

attributes. Tables can then be related to other tables (hence the “relational” in relational 

theory) through constraints on domains, keys, and tuples [Date04, Elma03, Rals03, 

Rama03, Silb96, Tuck04].  

The query language of choice for most implementations is structured query 

language (SQL). SQL was proposed as a standard in the 1980s and is currently an 

industry standard. Unfortunately, many seem to believe SQL is based on relational theory 

and therefore is a sound theoretical concept. This misconception is perhaps fueled by a 

phenomenon brought on by industry. Almost all relation database management systems 

(RDBMS) implement some form of SQL. This popularity has mistakenly overlooked the 

many sins of SQL including the following: 

 

 SQL does not support domains as described by the relational model. 

                                                

6

 The degree of resemblance is often in the eye of the beholder.  

7

 Many mistakenly consider a record as a colloquialism for tuple. The distinction is that a tuple is a set of 

ordered elements whereas a record is a collection of related items without a sense of order. Interestingly, in 

SQL a result from a query can be a record whereas in relational theory each result is a tuple. Many texts use 

these terms interchangeably, cre ating a source of confusion for many.  
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 In SQL, tables can have duplicate rows. 

 Results (tables) can contain unnamed columns and duplicate columns. 

 The implementation of nulls (missing values) by host database systems has been 

shown to be inconsistent and incomplete. Thus, many incorrectly associate the 

mishandling of nulls with SQL when, in fact, SQL merely returns the results as 

presented by the database system

8

. 

 

2.2.1 Technologies 

The technologies used in RDBS are many and varied. Some systems are designed 

to optimize some portion of the relational model or some application of the model to data. 

Versioning is possible with RDBS, but the mechanisms are manifestations of the logical 

design of the data model (schema) rather than embedded as a technology. There are two 

basic mechanisms for representing version data in relational database systems, horizontal 

and vertical.  

Horizontal refers to the traditional mechanism of normalizing the data into tables 

and relationships. Versioning can be achieved through parent/child relationships among 

the tables. The concept of differing metadata per attribute can also be achieved in a 

similar manner, but at the expense of time consuming queries. A fully optimized 

horizontal application does not perform well enough to meet the high demand of 

applications that require large, complex data feeds. 

                                                

8

 Some of the ways database systems handle nulls range from the absurd to the unintuitive.  
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Vertical refers to an implementation by which the data is abstracted and stored as 

proxies. That is, the database is implemented such that each table contains part of the 

information necessary to determine the type and value of an attribute. Thus, all entries in 

the tables for attributes “refer” to enumerated types and even enumerated values. Proxies 

are therefore similar to how object-relational database systems store data. Versioning is 

possible due to the ability to store duplicates in the proxy tables. Uniqueness is 

compromised in this mechanism and mitigated solely through the use of surrogate keys

9

. 

Due to the fragmented nature of the tables, deeply nested queries are necessary to 

successfully retrieve an entity from the database. Thus, vertical mechanisms are even 

more prone to performance issues than horizontal mechanisms. 

A similar concept to versioning available in RDBS is database archiving. Owners 

of large systems often rely on complex relational databases as the foundation of their 

business data. Due to the nature of the business operations and decision making, the 

databases are often allowed to grow without bounds. This creates a performance problem 

where the queries necessary to retrieve data force the system to issue many sub-queries 

and joins among the proxy tables. As more data is added, the queries take longer and 

longer to complete. It has been shown that performance degrades rapidly as new data is 

added. Ironically, most of this data is stored in production databases but rarely accessed. 

Database archiving allows for removing this rarely accessed data and storing it on a 

variety of storage media while providing easy access. This poses intriguing problems 

when data that has been archived is reintroduced into the database – effectively creating 

                                                

9

 Often exploited to force data models to conform to relational standards.  
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two copies of the data. This duplication is often intentional on the part of the database 

administrators (at the behest of the analysts) and can be used to maintain versions of data 

[Lee04].  

Another technology employed in RDBS is called multiversioning. 

Multiversioning is a collision detection and resolution mechanism for distributed 

relational databases. There are several forms of multiversioning, but the essential 

implementation uses timestamps as a means to detect a version collision – the arrival of 

conflicting or duplicate operations on the same data. Multiversioning can be extended as 

a mechanism for version detection using ALV [Hada96, Lome90] 

 

2.2.2 Applications 

The application of RDBS is manifold with a plethora of implementations too 

numerous to entertain a notion of listing individually. Some of the more popular 

commercial relational database management systems (RDBMS) include Microsoft SQL 

Server [Micr00], Oracle [Orac05], and MySQL [MySq05]. These systems are designed 

with the relational model as the core architecture goal, but as is the case in nearly all 

implementations, fail to completely meet that goal. Some, such as Oracle, extend the 

implementation to include technologies that are well beyond the scope of the relational 

model

10

. Specific detriments to these systems are the adoption of SQL and the treatment 

of nulls. SQL is not a true representation of the relational model and thus any 

implementation that limits its query expressiveness to that of SQL is implementing a 

                                                

10

 Some would consider this innovation.  
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deviant of the relational model. Fortunately, most of the successful systems overcome 

these limitations with optimized architectures that perform and scale well to a wide 

variety of data

11

. 

 

2.2.3 Comparison with ALV 

Relational database systems are the target platform for ALV. Relational theory is 

sound and well practiced. Although versioning is a relatively new concept brought on by 

object-oriented techniques, little in the way of back fitting versioning to relational 

systems has been considered. This work is an effort to fill that gap and provide relational 

database designers the ability to store all data pertinent to an analysis without loss or 

compromise. 

However, it has been suggested that ALV violates Codd’s original data integrity 

constraint that each tuple in a relation is permitted one and only one value for each of its 

attributes (the sanctity of first normal form). How can a technology such as ALV dare to 

violate this premise? ALV is designed to augment RDBS with extensions of the database 

server capabilities. It permits database designers to maintain Codd’s premise in the 

original table structure. The premise is never violated per se; rather ALV provides a 

mechanism whereby versioned data can be substituted with that of the original data in the 

original structure without modification. Furthermore, the version store for ALV is 

designed to contain unique entries for each attribute version thus preserving Codd’s 

                                                

11

 A positive example of industry isotrophism versus academic rigor.  
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original premise and extending it to versioning. This is perhaps the greatest advantage of 

the ALV technology. 

 

2.3 Temporal Database Systems 

Temporal database systems (TDBS) are based on relational database theory and 

are often implemented on relational database systems as extensions or services. TDBS 

are designed to incorporate time as a storage and retrieval mechanism. Time is considered 

not only a data element but also an operation that can be used to answer queries. Thus 

temporal databases store information about the entities (objects) as a parameter of the 

time dimension. Query mechanisms are therefore optimized for exploitation of the 

temporal states of the data [Lu96]. “The goal of temporal databases is to uniformly 

integrate past, current and future information in a unified system,” [Elma93]. Early work 

in temporal databases demonstrates a marking concept that marks tuples with time 

reference points rather than creating dedicated (and complicated) internal relationships 

expressed in time [Gadi88]. 

Tansel in his work on temporal database theory stated, “Conventional databases 

were designed to capture the most recent data, that is, current data. As new values 

become available through updates, the existing data values are removed from the 

database. Such databases capture a snapshot of reality. Although conventional databases 

serve some applications well, they are insufficient for those in which past and/or future 

data are also required. What is needed is a database that fully supports the storage and 

querying of information that varies over time,” [Tans93]. 
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RDBS store information about the real world they attempt to represent. However, 

any useful representation of the real world needs to address the issue of the temporal 

nature of information, since the real world is very dynamic. In the relational model, the 

temporal nature of data has been largely ignored, being reflected only through updates 

while ignoring the past states. Early TDBS attempted to address this deficiency in an ad 

hoc fashion, primarily through applications that ran on top of the RDBS. This prohibits a 

high level of independence between the data and the application programs. TDBS are an 

attempt to integrate time as an intrinsic part of the model. 

The difference between relational databases and temporal databases is that 

temporal databases incorporate one or more attributes into the structure of all objects 

(database, table, tuple). Thus, most temporal database systems are relational systems with 

time as a key element. Conventional or static [Dean, 1989] databases reflect the most 

current state of the domain of interest. When they are updated; existing data is discarded 

and the new data inserted. Temporal databases reflect current state and state history in 

applications where no data is discarded and replacements are characterized by an element 

of time. A data model represents the semantics necessary to support a specific 

application's purpose. If that purpose includes time, then the temporal nature of the data 

must be represented in the data model. For example, an event occurs at a point in time 

and is recognized by the fact that it changes the state of a thing in the application domain, 

resulting in a state history [Gora95]. 

There has been a considerable amount of work in the area of temporal databases. 

Most of the research efforts have been directed towards extending the relational model to 



www.manaraa.com

Bell 2005 – Attribute-Level Versioning: A Relational Mechanism fo r Version Storage and Retrieval   35  

 

incorporate time. Two approaches have been proposed in the literature for temporally 

extending the relational algebra: tuple time stamping, and attribute time stamping. Tuple 

time stamping uses a timestamp as a special attribute of the relation scheme and hence is 

part of every tuple. An initial implementation of this was first proposed in LEGOL 2.0 

[Dey96], which uses two implicit time attributes, start and stop. Attribute time stamping 

is essentially the same concept only applied to each attribute where appropriate

12

 

[Dey96]. 

A very useful paper by Jensen et. al. [Jens92] presents a proposal for consensus of 

temporal database terminology. Since no rebuttal has been published, much of the content 

of this article is now considered standard practice. Unfortunately, the same cannot be said 

about data versioning or versioning in general. 

 

2.3.1 Technologies 

Major DBMS tools are incorporating facilities for temporal data management 

(e.g., Oracle's Spatial Cartridge and Informix's Datablades). There are two basic 

technologies or theories of time used in these systems. The first can be best described as 

enabling a “point in time” relationship among the data (timestamps) [Jens92]. The second 

can be best described as enabling a “change over time” relationship among the data (time 

sequences) [Jens92]. These two technologies can be combined to form a hybrid that can 

relate the data to time using timestamps, time sequences, or both (bi-temporal) [Jens92]. 

                                                

12

 One would have to have a very good reason to store temporal changes to primary key values.  
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Because the concept of versioning was not included in Codd’s model, some 

researchers have investigated how versioning could be implemented. The research to date 

has been in the area of temporal databases. There are three general approaches: table-

level versioning, where new snapshots are created when any attribute change occurs; 

tuple-level versioning, where an entity's history is maintained and monitored through 

changes to individual records in the attribute table; and attribute-level versioning, where 

variable length fields hold lists of time-stamped attribute versions. Storing lists of time 

stamped attribute versions demands alternative and complex algebra for fast retrieval 

[Blak94].  

Likewise, the concept of storage of temporal data involves a complex mechanism 

that must permit fast retrieval. Each attribute of each entity that has a temporal element 

has a value that is determined by a sequence of events. Thus, all attribute values are time-

dependent. In an application where values change frequently, this could lead to the need 

to store many time-dependent values. This concept requires modification to the database 

system to optimize storage and retrieval primarily at the physical level, but will also 

require small modifications at the logical level. 

Numerous modifications and structural extensions to the relational model and 

relational databases have been posed to accommodate large amounts of temporal data. 

Research topics include temporal functional dependency [Rodd02], temporal query 

language extensions [Elma03], changes to the relational model and relational algebra 

[Dey96], and specialized indexing mechanisms to support fast temporal queries 

[Elma03].  
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Most of the research on temporal databases has concentrated on extending the 

relational model to store and retrieve time in an appropriate manner. These extensions 

can be grouped into two main categories. The first approach uses First Normal Form ( 

lNF) relations in which special time attributes are added to a relation and the history of an 

object (attribute) is modeled by several lNF tuples. 1NF is typically implemented using 

timestamping. The current temporal techniques all comply with first normal form (1NF) 

– each tuple contains only atomic attributes. These approaches are collectively labeled 

tuple-versioning approaches to temporal design.  

The second approach uses Non-First Normal Form (N 1NF) relations in which 

time is attached to attribute values of a relation and the history of an object (attribute) is 

modeled by relaxing the 1NF constraint, thereby allowing multi-valued attributes 

[Gadi88]. These approaches have been referred to by several researchers as attribute-

versioning approaches to temporal design [Hada02, Piss94]. Table 2-1 shows the 

employee table expressed using this multi-valued attribute approach (assuming that only 

salary and department have temporal concern): 

 

Emp# SSN LName FName Salary Department 

3025 086630763 Lyons James  {<15K 

(1/8/95,1/15/98]>, <25K 

(1/8/95, now]>} 

{<dept1 

(1/8/95,11/5/98]>,<dept2 

(11/5/98, now,]>}  

3089 579659458 Gordon Walden  {<25K (2/26/95, now]>}  {< dept1 (2/26/95, now]>}  

3092 129548660 Charles Davis  {<18K (2/28/95, now]>}  {<dept2 

(2/28/95,8/22/98]>, <dept3 

(8/22/98, now,]>}  

3105 454625914 Eric Wood  {<23K (11/2/95, now]>}  {< dept1 (11/2/95, now]>}  

Table 2-1: A multi-valued attribute temporal “employee" relation 

 

 

Because this approach allows multiple values for each temporal attribute, it allows 

the database to maintain the desirable quality of having a single tuple represent a single 
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entity in the real world. However, the use of multi-valued attributes is problematic under 

current relational database management standards [Alle00]. The problem is that each of 

the multi-valued attributes are presented as having separate parts and not as a whole. This 

eliminates any control and predictability over the meaning of the attributes. Attribute 

values are only meaningful when considered as a whole. An individual member of the list 

of attribute values has no meaning outside the list. By managing the multiple values 

(versions) as a whole object, it would be possible to retain the tenets of the relational 

model, thus preserving the meaning of the attribute-versions. 

Studies have verified that the major performance trade off between different types 

of TDBS is between the restructuring (unpack) operation needed in temporal databases 

using attribute timestamping and the join operation needed in temporal databases using 

tuple timestamping. Furthermore, the experiments show that keeping all temporal tuples 

in one single relation does not prove to be an effective alternative for temporal databases 

which use tuple timestamping [Gora95]. Although logically the concept is sound, in 

practice the extra space needed to pack the information into the table forces the data to 

become fragmented. Even if measures are taken to treat the fragmentation problem, the 

data retrieved for each entity in the table grows with each timestamp value added to the 

entity. Thus, this solution is not scalable to larger data sets or data sets with a high degree 

of time variability in the data. 

Lastly, some researchers have a view that it is that database designers should 

determine the most appropriate data structures for an application without taking into 

account which information items have a temporal element. That is, temporal elements 
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should be permitted to be stored outside the confines of the database design (schema). 

This approach makes easier the addition of space or time features to legacy databases that 

usually do not contain explicit temporal specifications [Pare99]. This philosophy is the 

same for that of ALV – to extend RDBS without the need to alter the schema of the 

original data. This extension will occur primarily at the physical level – the creation of a 

physical store for the version data. 

 

2.3.2 Applications 

Numerous authors recognize the importance of representing the temporal aspects 

of data. Analysts must frequently be able to retrieve not only the most current value of an 

attribute, but also its entire history. Such examples include, a specific customer's account 

balance on a specific date, the length of time an employee has been at his or her current 

salary level, the date on which an employee's salary was last changed, or the last date on 

which an out of stock event was experienced for a specific inventory item [Gora95].  

The application of TDBS fall into two broad categories, applications that use time 

as an element (data item) and applications that use time as a dimension to define the data. 

Most applications have a very practical implementation of data structures to store 

temporal data and are not normally as sophisticated as the research in temporal databases 

that is currently proceeding. 

The application of time as data (or as a data element) has many uses. Most notable 

are those applications that rely on time as a dimension to define or shape the meaning or 

application of data. Examples include insurance, in which claims and policy processing 
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carry a time element, and health care where patient history is necessary to diagnose 

systemic or illnesses with long time frames. Reservation systems in general are areas 

where time has an important meaning. TDBS of this type typically use timestamps to 

store time at the tuple level. 

The application of time as a defining mechanism is a bit more complicated and 

requires an application where data has a definitive lifetime. Such areas include logistical 

applications, where entities in the database have certain properties (payloads) at certain 

times, and historical archives, where data as events are valid only during specified 

periods. TDBS of this type typically use time sequences (valid/invalid, duration, etc.) and 

sometimes employ bi-temporal techniques, the use of both timestamps and time sequence 

attributes, to track changes over time. 

 

2.3.3 Comparison with ALV 

Temporal data storage and versioning have become particularly important in 

several application areas, including temporal databases and version control and 

management systems. Although these two areas have a similar conception, the systems 

developed for each area have different concerns. Versions and temporal data are different 

concepts; temporal data reflects the states of objects in a time-oriented way; time does not 

normally apply to versions with regard to state. Rather, time is used to qualify when or 

during which time frame a version is created or valid. Techniques developed in temporal 

databases cannot solve the problems of versioning. That is, temporal databases are not 

designed to store versions of attributes. Temporal databases store events marked by time. 
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These events could indeed be a change to a single attribute, but there is no association 

with that change (event) to any other data nor is there association of additional metadata 

with the event. Those TBMS that do store versions always store the entire entity as a 

version (marked by timestamping or time sequences). In contrast, the techniques 

developed in the area of version control and management lack of the ability to support 

time-varying data [Lu96]. 

Temporal database theory can be applied to ALV by including temporal elements 

in the metadata for the attribute values stored. That is, it is possible to apply temporal 

elements to the attribute versions by storing temporal metadata that can be evaluated 

using either or both of the temporal data evaluation techniques. A study of how to add a 

temporal element to versioning is not a primary focus of this work. It is the use of 

metadata attributes associated with the attribute version that permits the storage of any 

number of timestamps or time sequence attributes. The implementation of temporal 

databases using attribute timestamping is a technique that accomplishes some of the goals 

of ALV, and represents a successful attempt to associate metadata at the attribute level 

versus the tuple level. The application of temporal database theory in versioning is an 

area that can be explored as future work. 

 

2.4 Object-Oriented Database Systems  

Object-oriented database systems (OODBS) are storage and retrieval mechanisms 

that support the object-oriented programming paradigm through direct manipulation of 

the data as objects. They contain true object-oriented type systems that permit objects to 
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persist between applications and usage. However, most lack a standard query language

13

 

(access to the data is typically via a programming interface) and therefore are not true 

database management systems. 

OODBS are an attractive alternative to relational database systems, especially in 

application areas where the modeling power or performance of relational database 

systems is insufficient. These applications typically maintain large amounts of data, and 

additionally, often want to manage the whole history of the individual objects is stored 

and no data is ever deleted. “A key feature of object-oriented databases is to provide 

support for complex objects by specifying both the structure and the operations that can 

be applied to these objects [via an object-oriented programming interface],” [Date00, 

Elma93]. 

Although ORDBS are similar to OODBS, OODBS are very different in 

philosophy. OODBS try to add database functionality to object-oriented programming 

languages via a programming interface and platforms. By contrast, ORDBS try to add a 

rich data types to relational database systems using traditional query languages and 

extensions. OODBS attempt to achieve a seamless integration with object-oriented 

programming languages. ORDBS do not attempt this level of integration and often 

require an intermediate application layer to translate information from the object-oriented 

application to the ORDBS or even the host relational database system. Similarly, OODBS 

are aimed at applications that have as their central engineering perspective an object-

oriented viewpoint. ORDBS are optimized for large data stores and object-based systems 
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 There are some notable exceptions [Orac05], but this is generally true.  
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that support large volumes of data (e.g., GIS applications). Lastly, the query mechanisms 

of OODBS are centered on object manipulation using specialized object-oriented query 

languages. ORDBS query mechanisms are geared toward fast retrieval of volumes of data 

using extensions to the SQL standard. 

OODBS are particularly suitable for modeling the real world as closely as 

possible without forcing unnatural relationships between and within entities. The 

philosophy of object-orientation offers a holistic as well as modeling-oriented view of the 

real-world. These are necessary for dealing with an elusive subject like modeling 

temporal change, particularly in adding object-oriented features to the tuple-level 

database design mentioned previously. Despite the general availability of numerous open 

source OODBS, most are based in part as a relational system supporting a query language 

interface and therefore are not truly an OODBS, rather operate more like an ORDBS. All 

true OODBS require access via a programming interface. 

 

2.4.1 Technologies 

There is one very important aspect of OODBS that corresponds directly with that 

of the ALV technologies. In OODBS, each object can have a particular state and that 

state can change either over time or as events dictate. Storing the state of the object is a 

natural primitive for a versioning mechanism. In fact, many OODBS systems include a 

concept of versioning. 

OODBS that track changes for objects use data versioning for tracking historical 

changes as well as for issues related to transaction management. This concept of 
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versioning permits increased concurrency operations by allowing multiple views of the 

same entity, each with (perhaps) a different set of historical values of the data, but its 

primary benefit is that it can be used to execute queries against historical data. In this 

perspective, objects are versionable in that several versions can be derived from one 

object. Versions are either active or committed. An active version c of an object begins as 

a copy of a committed version which can then be manipulated independently of all other 

such versions. The values of the active version may be modified extensively for some 

period. Eventually, the modified active version may be promoted to become a new 

committed version, if its state is consistent with the current state of the other committed 

versions; otherwise, it is disposed. These multiple versions

14

 are placed in a version chain 

– normally represented as a graph or tree in memory – such that the most recent correct 

version is stored at the head of the chain and is called the last committed version. A new 

committed version is added in an appropriate position in the version-chain. The version-

chain of an object effectively captures the evolution of the object through time (by 

preserving its historical information) [Hada02]. 

However, in object-oriented databases, support for evolution is a critical 

requirement since evolution is characteristic of complex applications (e.g. computer-

aided design and manufacturing; office information systems) for which they provide 

support. Due to the underlying rich data model (in contrast with conventional data 

intensive record processing applications) these applications require dynamic 

modifications to both the data residing within the database and the way the data has been 
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 The author [Hada02] refers to them as multiversions and the concept as multiversioning, which is similar 

to the multiversioning technique used to detect version collisions in distributed database systems.  
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modeled, i.e. both the objects residing within the database and the schema of the database 

are subject to change. Furthermore, there is a requirement to keep track of changes in 

case they need to be reverted. 

Historically, the database community has employed three fundamental techniques 

for modifying the conceptual structure of an object-oriented database, namely:  

 

 schema evolution where the database has one logical schema to which class 

definition and class hierarchy modifications are applied 

 class versioning which keeps different versions of each type and binds instances 

to a specific version of the type  

 schema versioning which allows several versions of one logical schema to be 

created and manipulated independently of each other 

 

In addition, a number of mechanisms have been created for managing the 

evolution of objects residing in the database. These strategies are called object versioning 

strategies [Rash00]. These include the following classes of strategies [Katz90]:  

 

 organization of the space of versions – the managing of a version set (a set of all 

variants) 

 dynamic configurations and dereferencing – the realization of versions at run time 

 hierarchical compositions across versions (configurations) – the versions are 

stored and referenced as hierarchical objects using tree and list mechanisms 
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 workspace organization – the versions are managed in a workflow manner, 

establishing a set of sets of versions that form the workspace that versions can be 

derived from 

 

One interesting concept for storing temporal version information in object-

oriented databases concerns a technology called “temporal versioning mode” (TVM) 

[Lu96]. This technology employs a combination of schema versioning and object 

tracking mechanisms where each version (instance of an object) has its own finite 

lifetime. Access to the individual version history is accomplished via a version identifier 

(similar to a surrogate key). This technique applies concepts from both the temporal 

database and document management systems to form a technology that can successfully 

store and track version history for objects. 

 

2.4.2 Applications 

Application areas of object-oriented database systems include GIS systems 

(geographical information systems), scientific and statistical databases, multimedia 

systems, PACS (picture archiving and communications systems), and XML warehouses.  

 

2.4.3 Comparison with ALV 

ALV is not intended to be used in OODBS systems. Since OODBS systems 

include a concept of versioning

15

 supported by the object-oriented paradigm as state, the 

                                                

15

 Or could easily given the flexibility of object -oriented technologies. 
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ALV technology simply isn’t needed. However, there is no such correlation for relational 

database systems. Thus, the integration of a versioning system (ALV) with that of 

relational databases will permit relational database systems to model state (version 

history) in a way analogous to that used in object-oriented databases. 

Research in the area of exploiting temporal data in OODBS has shown a split in 

philosophy as to whether to associate time with the objects and their state or within the 

attributes themselves. Some researchers [Jens92] are exploring object versioning (the 

storage of time using two time intervals during which time the object version is valid 

[Elma93]), while others [Gadi88] are exploring attribute versioning (the storage of time 

intervals with each attribute where the sum of the attribute versions comprise the version 

of the object in time [Elma93]). Much of the research into the former area will form the 

foundation for applying temporal data using the ALV technologies in future evolutions of 

the technology (see Chapter 8). 

 

2.5 Object Relational Database Systems 

Object relational database systems (ORDBS) is an application of object-oriented 

theory to relational database systems. ORDBS provide a mechanism that permits 

database designers to implement a structured storage and retrieval mechanism for object-

oriented data concepts. ORDBS provide the firmament of the relational model – meaning, 

integrity, relationships, etc. – while extending the model to store and retrieve data in an 

object-centric manner. Implementation is purely conceptual in many cases as the 

mapping of object-oriented concepts to relational concepts is tentative at best. The 
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modifications, or extensions, to the relational technologies include modifications to SQL 

which allows the representation of object types, identity, encapsulation of operations, and 

inheritance [Elma03]. However, these are loosely mapped to relational theory as complex 

types. Although expressive, the SQL extensions do not permit the true object 

manipulation and level of control of OODBS. The most popular ORDBS is ESRI’s 

ArcGIS environment [ESRI00]. Other examples include Oracle and Informix [Elma03]. 

 

2.5.1 Technologies 

The technology used in ORDBS uses the base relational model. Most ORDBS are 

implemented using existing commercial RDBMS such as Microsoft SQL Server and 

Oracle. Since these systems are based on the relational model, they suffer from an acute 

conversion problem of translating object-oriented concepts to relational mechanisms. 

There are many problems with using relational databases for object-oriented applications 

[Risc04]. Such problems include: 

 

 Complex mapping from the OO conceptual model to relations 

 Complex mapping implies complex programs and queries 

 Complex programs implies maintenance problems 

 Complex programs implies reliability problems 

 Complex queries implies that the database query optimizer may be very slow 
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 More vulnerable to schema changes than relational systems because of the 

mappings of object concepts to complex types

16

 

 Performance 

 

Although these problems seem significant, they are easily mitigated by the 

application of an object-oriented application layer that communicates between the 

underlying relational database and the object-oriented application. These application 

layers permit the translation of objects into structured (persistent) data stores. 

Interestingly, this practice violates the concept of a ORDBS in that you are now using an 

object-oriented access mechanism to access the data, which is not why ORDBS are 

created. They are created to permit the storage and retrieval of objects in a relational 

system by providing extensions to the query language

17

  

Unlike true OODBS that have optimized query mechanisms, such as ODL/OQL, 

ORDBS use query mechanisms that are extensions of the SQL query language. 

 

2.5.2 Applications 

The ESRI product suite of GIS applications contains a product called the 

Geodatabase – shorthand for geographic database – which supports the storage and 

management of geographic data elements. The geodatabase is an object-relation database 

                                                

16

 This is  especially true when the object types are modified in a populated data store. Depending on the 

changes, the behavior of the objects may have been altered and thus may not have the same meaning. 

Despite the fact that this may be a deliberate change, the ef fects of the change are potentially more severe 

than in typical relational systems.  

17

 And, presumably, necessary or appropriate changes to the physical layers.  
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that supports spatial data. It is an example of a spatial database [Elma03] that is 

implemented as an ORDBS

18

. 

Using the geodatabase, integrity rules and behavior can be defined for spatial data, 

allowing the modeling of important geographic objects, such as networks, terrains, and 

image catalogs. For example, the United States Census data can be modeled using the 

associated integrity rules: 

 

 Census blocks cannot overlap 

 Census blocks must fully cover a given geographic region 

 Census blocks must be contained within the boundaries of the given region 

 

Integrity rules and behavior are implemented on intermediate representations of 

the data in an abstract form – an “object” (i.e., software components that instantiate and 

animate the rules and behavior stored in the database).  

Therefore, the geodatabase is an ORDBS implementation of the elements in the 

GIS environment, or “objects,” which are stored in relational tables designed to store the 

state and operations of the objects in a persistent store [ESRI00]. In general, ORDBS 

provide a richer environment to implement object concepts in a database while providing 

the sound firmament of the relational model. 

 

                                                

18

 There is no requirement that spatial database systems be implemented in ORDBS, e.g. Oracle [Or ac05]. 

ESRI has chosen to implement the geodatabase as an ORDBS. The geodatabase is used in this work as a 

reference/example for a ORDB because it is well understood by the sponsors of this work.  
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2.5.3 Comparison with ALV 

ORDBS can persist the state of objects. This is usually implemented in a 

horizontal fashion where state is persisted in one or more tables in one or more 

parent/child relationships. Like relational databases, implementations of ORDBS are 

designed to save only the most current state of the object. The only ORDBS found to 

have any versioning capabilities is ArcGIS. Fortunately, since the ALV system is an 

extension of a relational database system, ORDBS can also leverage the ALV 

mechanisms to provide a versioning mechanism for saving state history of objects. Thus, 

ALV can be used to enhance the ORDBS extensions to include versioning. 

 

2.6 Other Considerations 

The following sections detail additional areas of interest found during this 

research. Each topic is discussed briefly and concludes with statements of applicability to 

this work. 

 

2.6.1 Security 

Multi-level security (MLS)

19

 requires the ability to segregate data based on 

predefined groupings of access permissions (users) to corresponding partitions of the 

data. Many organizations require this level of additional security to protect data 

considered sensitive or otherwise damaging should it be disclosed to unauthorized 

                                                

19

 The acronym MLS falls into an interesting category of term s that sparks emotional and sometimes 

aberrant behavior among scientists and engineers – few can define exactly what it is, but many have a long 

list of personal opinions of what it isn’t.  
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personnel. Access to these databases must be restricted and controlled to limit the 

unauthorized disclosure or malicious modification of data contained in them. However, 

the conventional models of authorization that have been designed for database systems 

supporting the hierarchical, network and relational models of data do not provide 

adequate mechanisms to support controlled access to the data. These systems use a 

combination of dedicated hardware and customized application access layers that require 

custom development and integration to use. They are therefore not applicable for use in 

developing systems of systems solutions

20

.  

However, there are solutions that do present a viable alternative to these dedicated 

mechanisms. Pissinou et. al. present a temporal multi-level security (MLS) mechanism 

for temporal data [Piss94]. The solution involves extending the multilevel secure 

relational model to capture the functionality required of a temporal database. This is 

accomplished by assigning class access to temporal attributes and assigning security 

classifications to the temporal elements. This solution is similar to the goal of tracking 

security in the ALV system. Security tracking in this sense must associate a classification 

with each object in the database; all data must be tagged with the appropriate metadata 

that permits the inclusion or exclusion of data based on classification groupings.  

ALV is designed to associate one or more metadata attributes with each attribute 

version. This meta attribution will allow the data to be tagged with one or more 

categorical attributes that can in turn be used to partition the data. Thus it is possible to 

store data in an ALV enabled data store using multiple security levels. This partitioning 

                                                

20

 Specific reference to systems of this nature is beyond the scope of this work. 
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of the data would then permit the selection of attribute versions (and thus versions of the 

entities) based on the categorization attributes. An application of this technique would 

allow retail organizations store cost of goods and inventory data along with sales and 

customer data – each datum being one or more attribute versions. When the data is 

presented, say to a customer, that user’s access would be set to permit the viewing of data 

for the customer permission set.  

 

2.6.2 Legacy Application Support 

Legacy applications are those applications that are in life cycle maintenance 

without evolution or technological advancement. Few of the technologies explored

21

 

addressed the need to continue to support legacy application of the technologies being 

expanded or created. With the possible exception of ORDBS, supporting legacy 

applications using modern database systems is impractical at best [Bohl98]. Today’s 

information technology and global economy are forcing businesses and organizations to 

consider the value of their legacy systems and to plan evolution of those systems through 

extensions and interoperability rather than total system replacement. It is no longer 

feasible to retool every 18 months

22

. 

This is especially true in areas such as finance, marketing, and property and 

resource management. Many database applications manage data that must be versioned – 

                                                

21

 This category refers to commercially available and open -source repository systems. There are a few 

experimental and academic systems that address various aspects of legacy support but none fully satisfy the 

requirement.  

22

 This isn’t helping  the gap between industry and academia. It only further expands the application of 

advanced theories that are based on new systems. ALV attempts to close that gap by implementing the 

technology on existing systems (RDBMS). 
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be that spatial, temporal, or historical. These applications typically use relational systems. 

If versioning is to supported, the versioned data must either be accessible using the 

DBMS, or employ the services of a proprietary system that co-exists with the DBMS. 

Clearly, the goal is to enable versioning for these legacy systems

23

. Versioning of data 

has been investigated from an enterprise perspective by leveraging enterprise 

architectures to supply versioning capabilities in a middle tier rather than at the database 

or repository level [Chatt04]. This technique permits the database to remain unchanged 

while providing a degree of versioning capabilities. As previously stated, this is also a 

primary goal of ALV. However, with ALV the versioning mechanisms are being built 

into the database system itself, thereby ensuring a more tightly coupled and consequently 

potentially more efficient versioning mechanism. 

Legacy support is one of the key areas that ALV is designed to address. Since 

ALV is designed as an extension of the relational database system, the advanced 

technology of version storage and retrieval is available to all legacy applications. Thus 

developers can modify existing legacy applications to enable versioning without 

modifying their original schemas or worse, porting their database repository to a 

incompatible repository model (e.g., converting a relational database to that of a pure 

object-oriented database or vice-versa

24

). 

                                                

23

 It should be noted that the resulting changes to the applications can no longer be considered legacy 

applications.  

24

 Arguments can be made that moving a well designed relational model to that of an object -oriented model 

can be far less problematic. Unfortunately, few relational systems exhibit the goodness of fit that the 

relational model enforces – see footnote #11 in section 2.2.2. 
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A wealth of legacy systems and applications will benefit substantially from built-

in, integrated versioning support. Providing a foundation for such support is an important 

and substantial challenge for this project. 

 

2.6.3 Graph Stores 

Repositories that store data in the form of edges (directed or undirected) and 

nodes are gaining popularity especially in the application of Semantic Web technologies. 

Graph stores

25

 store data in a very different way than traditional relational database 

systems and their derivatives. As mentioned, data is either an edge or a node. Some graph 

stores allow storage of metadata along with the elements. There are many efforts 

underway exploring graph stores. Examples of graph store systems include Inkling, 

JENA, KAON, Parka, RDFSuite, Sesame with SAIL, and TAP [Beck03, Fens03, 

Magk02]. 

Versioning is possible with graph stores. One vendor has implemented a crude 

form of Attribute-Level Versioning

26

. The graph store permits duplicate entries. These 

duplicate entries are called versions of the data item stored. Metadata tags are used to 

distinguish currently selected or preferred values. Although a very effective means of 

storing all possible information about entities (or links), this implementation fails to meet 

the needs of this work to preserve connectivity to existing legacy applications, is not 

optimized for version retrieval, and does not permit any analysis of the version history. 

                                                

25

 Sometimes called RDF stores, object stores, or object databases. 

26

 Under contract for the federal government and subject to protection restrictions which forbid disclosure 

of the vendor and the technology. The author is principally involved in the development of the versioning 

mechanism.  
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Further refinement could enable such features, but the implementation will never fully 

meet the legacy compatibility constraint because the concept of a graph store does not 

meet the relational model – the model upon which the majority of all data stores are 

based. Lastly, the graph store concept itself is not designed to store the type of bulk data 

that most databases hold. This is especially true for query processing. Most graph store 

implementations store the relationships in memory. The more data, the more relationships 

must be stored and therefore more memory must be used to process the queries

27

. Thus, 

performance and scalability are the primary concerns for this technology.  

 

2.6.4 Spatial Data and Temporal Databases 

There has been considerable research in temporal-spatial versioning mechanisms. 

Spatial data consist of spatial objects made up of the states (non-spatial attribute values), 

positions (the positions with geographic space) and shapes (the geometry features of the 

object; which may contains line, regions, etc.). Spatial databases facilitate the storage and 

processing of spatial and non-spatial data. However, regardless of the shapes of the 

objects, the problem is still the processing of the states of objects where the objects are in 

a 2- or 3-dimensional geographic space. Nevertheless, the storage of states is quite 

similar to temporal data processing where data is tagged with temporal attributes that can 

be queried, although the spatial semantics are different from temporal semantics. 

Therefore, a temporal-spatial data model can be possibly established by defining a 

                                                

27

 It is common to see requirements of 64-bit processor support for these systems not because of the 

advanced instruction  set, but for the expanded memory model supported by the 64-bit processor. 
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conceptual temporal-spatial space, specifying the temporal spatial semantics and 

extending the object-oriented data model to capture temporal-spatial versions [Lu96].  

The most popular system that implements spatial-temporal data is ESRI’s ArcGIS 

environment. As discussed previously, the versioning mechanism for ArcGIS is a 

workflow-based mechanism that permits vetting of changes by the community of users. 

Unlike the description above, ArcGIS is an object relational database implemented on 

Microsoft SQL Server, Sybase, or Oracle varieties. 

 

2.6.5 Long Transactions 

A "long" transaction can be loosely defined as one which is either left open 

(uncommitted) indefinitely (for example, while a system processes a large data set), or 

which is left open for longer than is required by an application. Long transactions are 

commonplace in distributed computing where it may not be possible to synchronize all of 

the nodes in the distribution at the same time. Thus, the transaction has an extended 

lifetime (remains active longer than the process that initiated requires). In some cases, the 

transaction is used as a means of forming a recovery log thereby making the transaction 

semi-persistent. The technique of using long transactions in this manner is called 

multiversioning [Hada96, Lome90]. 

Long transactions are implemented using row-level versioning. A database table 

is version enabled by augmenting keys of the entities in the table (rows) with a version 

number, thereby creating a composite key that is guaranteed to be unique. Changes done 

in a long transaction are tagged with version numbers unique to the long transaction 
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[Chatt04]. Since there is a version tag for each entity and a storage structure for the long 

transaction, the system is capable of rolling back the state of an entity to any point in the 

evolution of the entity (changes of its attributes). The application of long transactions 

therefore permits the extended storage of state throughout a distributed database system. 

 

2.6.6 Versioning Requirements 

The database systems and research areas surveyed present a common set of 

requirements that define what versioning should be. Although some of these requirements 

do not apply directly to any one particular database technology, these requirements align 

neatly with those presented that define ALV (see chapter one). 

There are four fundamental requirements for versioning of data. This work and 

the project created to realize and prove this work are designed to meet the requirements 

as specified below. Although there are many more specific requirements for ALV, the 

following are the fundamental requirements found in the literature common to all forms 

of versioning. 

 

2.6.6.1 Transparency 

The most important requirement for versioning is that the versioning mechanism 

should be as transparent as possible to permit continued operation of relational database 

systems and software. No changes should be required in the database application code to 

accommodate data versioning. Furthermore, the logical database should be configurable 

from outside the application code before starting execution. 
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Development and testing of database applications is difficult because the program 

execution depends on the persistent state stored in the database. That is, when a particular 

feature or function of the system is tested, the state of the data that the function operates 

on must be in a predictable state. Often the case is that the test data is not placed in 

configuration management and therefore is not held in a predicable state. Versioning of 

the persistent data stored in the database can solve some critical problems in the 

development and testing of database applications [Chatt04] by associating the versions of 

the data with the appropriate state of the test. For example, one version of an entity in the 

database could have a separate version for before, during, and after a function is 

executed. This permits testing the function with known data in a predictable state. 

 

2.6.6.2 Multiple Stores 

The versioning mechanism must support consistent logical (possibly hierarchical) 

states of the database simultaneously in the same physical database. Changes made in a 

physical database state should not be visible outside it. The same data should be 

simultaneously modifiable in multiple databases states.  

There is a catch. Versioning will generate potentially huge amounts of data. 

Consider adding a metadata set with a total length of 1000 to each attribute version of 

length 25. The ALV store will require 1025 storage bytes for each attribute version. Thus 

if there are 1000 tuples in a database that each have 10 attributes which generate 10 

attribute versions each, the additional version data will be 1000*10*10*1025 or 

102,500,000 storage bytes. If the versioning mechanism is associated with the database 
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system and not by database or table, the version store will quickly grow to an 

unmanageable size. For this reason, the version store for ALV must be associated with 

tables rather than the database and thus provide the potential to store thousands of 

attribute versions per tuple. 

This requirement ensures that the versioning mechanism can be leveraged against 

logical partitions of the data (i.e., at the table level) without affecting or imposing the 

same mechanisms on other partitions. This is especially necessary for systems that 

require versioning for a specific table or database and not all of the databases supported 

by the system. This also ensures that the versioning mechanism is used where appropriate 

and will not impede normal operation of database systems. 

 

2.6.6.3 Implemented as an Extension 

The versioning mechanism must continue to support all widely used relational 

database services such as triggers, constraints, etc. These must be supported in the native 

form of the hosted database system and apply to the versioning store itself where 

appropriate.  

This requirement will ensure the versioning mechanism exists as an extension of 

the host system without impeding functionality, performance, or implementation. This 

will also ensure that the versioning mechanism conforms to known standards to the 

extent that the host system supports them.  
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2.6.6.4 Support for Recovery 

The versioning mechanism must be maintainable within the context of a logical 

database server state. This includes administrative tasks designed to support tuning and 

preventive maintenance. Failure to implement this requirement will render the 

mechanism less transparent. For example, failures in the versioning mechanism may not 

be identified or recovered in the same manner as those of the host database system. This 

requirement will ensure the versioning mechanism conforms to known administrative 

operations, making the system more easily incorporated into an environment in which 

database administrators have a defined role. 

ALV will permit database designers and analysts to leverage advanced versioning 

mechanisms that support their legacy applications. Since ALV is implemented in MySQL 

(see Appendix B for complete details of the MySQL implementation), the system has 

direct access to all of the services of the RDBMS thereby allowing ALV to become a 

seamless extension of MySQL. Directing control to the ALV system is a transparent 

operation that can be implemented where needed and will permit the MySQL system to 

be modified to include the version store in commonly used administrative tasks. 

 

2.6.7 Concept versus Form 

Available database systems fail to demonstrate any reasonable attempt at 

versioning of data that meets all of the requirements as stated above. Furthermore, several 

works suggest that one approach – database snapshots – is not only limited but also 

flawed [Blak04]. 
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Similarly, the concept of storing all known values – the packrat concept to data 

storage – this raises the question of ‘When is the data no longer unique and when does it 

transition from historical reference to junk?’ A clear (semantic) problem pinpointed by 

this question is that known as the 'Ship of Theseus' debate: how much change can a 

predefined 'entity' undergo before it ceases to be a new version and becomes a new 

entity? 

Interestingly, it seems that current implementations, practices, and theories 

regarding versioning do not match the analysts’ perception of and reasoning about the 

data. In relational database terms, there is a mismatch between the logical, 

implementation-oriented view of data supported by the tools, and the application-

oriented, conceptual view that users follow in their everyday work. This mismatch is 

similar to that of traditional database management many years ago, when the market 

favored the relational approach and the conceptual-to-logical gap was filled by database 

design CASE tools based on the entity-relationship (ER) approach. Since then, the 

advantages of the conceptual approach to data modeling have been extensively 

demonstrated, in terms of user involvement and of durability of the design specifications 

[Pare99].  

It is thus foreseeable that a similar evolution will enable the creation and adoption 

of a usable versioning mechanism. The versioning mechanism must enable analysts to 

draw conclusions about their data by considering all known – previous and predicted – 

values of the attributes of the entities in the data. Patterns of change alone could make the 

difference between a logical estimation and a modeled behavior. 
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However, words of caution are sprinkled throughout the literature concerning 

reaching too high too soon. “Experience has shown that striving for the highest 

expressive power leads to unbearable complexity and eventually results in rejection of the 

[solution]” [Pare99]. Versioning systems must therefore also be adoptable immediately 

by the analysts or else they too will become a novelty reserved solely for the 

experimenter or academic. 

 

2.7 Conclusion 

A thorough examination of the state of the technologies and theories in the body 

of knowledge that is Computer Science clearly presents a gap in the research concerning 

the versioning of data with regard to relational database theory. Although object-oriented 

databases can inherently support a versioning concept and object relational databases can 

support a horizontal mechanism for version storage, none of the database paradigms 

support versioning at the attribute level while maintaining a functional connection to 

traditional relational databases. 

Centering the ALV technology in the relational database application arena 

protects the sanctity of relational databases systems

28

 while permitting the inclusion of a 

powerful versioning mechanism. This will enable scientists and analysts to prepare data 

for use in rigorous database applications drawing from the repository of all known or 

predicted values. 

                                                

28

 Pertaining to the theoretical (academic) application of theory. Commercial relational database systems 

often compromise the finer details of relational theory for the sake of mass  reuse and generalization of 

functionality. Hence the persistent and growing gap between academic rigor and industry isotropic 

applications.  
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Attribute-Level Versioning therefore is a uniquely conceived idea that has merit 

in the relational database paradigm. The continued exploration of versioning capabilities 

and implementation of ALV will permit the growth of a new direction in data versioning 

– the ability to store every permutation of a data’s attributes.
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Chapter Three – Introduction to ALV Technologies 

 

 

 

This chapter contains an introduction to the technologies and research conducted 

in support of this work and the related technology project. The ALV project is a very 

large, complex project. There are many opportunities to explore several sub-disciplines 

within the engineering and computer science disciplines. This work will focus on those 

areas that require new algorithms, structures, technologies, or unique applications of 

current technologies. Fortunately, several emerging technologies will solve the more 

mundane areas of the project such as data repository assimilation and deconfliction (i.e., 

Semantic Web [Anto04, Fens03]). However, there are no existing solutions for the 

storage and retrieval of versioned data. These areas are the most critical to the success of 

this project and therefore comprise the bulk of the work performed.  

ALV requires a specialized storage structure, a fast retrieval mechanism using a 

specialized indexing construct, and extensions to the SQL language. Another important 

area is the application of data-mining algorithms. New data-mining algorithms are 

necessary to complete the knowledge engineering process to gain additional knowledge 

about the datasets and their attribute versions. All of these areas will be explored by 

researching the following four technologies:  
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 Storage Mechanisms 

 Indexing Mechanisms 

 SQL Language Extensions 

 Data-mining Algorithms 

 

This work will research, design, and implement these technologies within the 

aspects of the ALV project and will analyze their application.  

This chapter begins with a presentation of the constraints of the related project as 

a way of explaining the implementation environment and practical limitations. The 

following sections, 3.2-3.5, will describe the research necessary to master the disciplines 

to create a viable solution for each of the needed technologies. Section 3.6 will address 

the application of emerging and related technologies. Section 3.7 concludes with a 

summary of the ALV technology. Section 3.8 forms an introduction to the format and 

content of the subsequent chapters. 

 

3.1 Project Constraints 

The supporting need for this research is a knowledge engineering project designed 

to combine multiple datasets about a subject area. This solution must be capable of 

storing known associations and relationships among the data, resolving collisions, storing 

collisions among the data attributes as alternative values, analyzing the alternative values, 
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and forming a hypothesis from the analysis. The output of this process will be a dataset 

that is the result of a query from the combined data and the versioned attributes.  

There are a number of restrictions imposed on the project by the project sponsors. 

These restrictions are due largely to the limitations of the environment in which the 

project must reside. In many ways, the supporting project for this work must bridge the 

gap between the application of theory and the practical limitations of using the product. 

Unlike most research projects where implementation details are left to later evolution and 

refinement of the prototype or proof of concept, the practical application of this work will 

be used to evaluate its ability to solve a hitherto unsolved problem – versioning relational 

data. These restrictions create a unique avenue for applying advanced research to real-

world problems. The following paragraphs detail some of the more important restrictions 

that have a direct bearing on the product of the research of this work.  

The implementation of the storage mechanism is limited to the Microsoft 

Windows platform, specifically Microsoft Windows 2000 Server, and is designed to run 

on Intel PC-based server hardware. As such, the storage mechanism must operate within 

the Windows operating system programming interfaces. This prohibits the design of 

specialized disk access algorithms. However, this does not prohibit the exploration of 

unique applications of known structures and memory access techniques. The upper 

memory limit for the chosen hardware is 2GB of RAM. 

In order to ensure that the system is performing well for the chosen hardware, the 

system must include mechanisms that allow systems engineers to tune portions of the 

system for optimization for a given task. These parameters include, but are not limited to, 
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block size and buffer size for the buffer manager. Another constraint is that the system 

must be capable of capturing and displaying statistics for all data stored as per traditional 

relation database management practices. 

The ALV project was created to integrate a versioning mechanism with a 

traditional database management system. The goal is to leverage a versioning technology 

from within the DBMS. The technology should become an extension of the DBMS rather 

than an add-on module or procedural access mechanism. An extension to existing 

technology will allow legacy applications to leverage versioning without having to 

redesign or alter the underlying database schema. Additional facilities can be added to 

permit the inclusion of the versioned data without changing the fundamental mission of 

the software. More importantly, this goal will ensure that the output of this project can be 

consumed by legacy applications that rely on relational database systems for storage.  

Among all of the available DBMS, only those that provide direct manipulation of 

the server code were considered. This restricted the selection to open source systems. 

Further implementation guidelines set forth by the sponsor of this work eliminates any 

open source system based on Java

1

 (e.g., Apache Derby). Open source systems are 

generally licensed using a GNU

2

-based license agreement. Most permit free use of the 

original source code with a restriction that all modifications be made public or returned to 

the originator as legal ownership. In the case of ALV, the sponsors have the choice to 

enlist support from the manufacturer, purchase rights to modify the system, or return the 

ALV technologies to the owner for incorporation into the product. It is the desire of the 

                                                

1

 Silly, yes, but true nonetheless.  

2

 GNU stands for GNU, not Unix. 
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author that the ALV technology be returned to the originator for incorporation into the 

next public release of the system. If permitted, this would perpetuate the open source 

mantra and give back to the community in exchange for what was freely offered

3

. 

Among all of the goals of this system, most paramount was to remain dedicated to 

traditional relation database implementations. The only possible candidate under these 

conditions is MySQL

4

. Therefore, this project will focus on implementing the solution as 

an extension to the MySQL DBMS, which will require adaptation of the MySQL engine, 

extension of the Structured Query Language (SQL), and additional tools to manipulate 

the data prior to and after storage. 

Businesses today are frequently forced to adopt new solutions in shorter and 

shorter timeframes in order to compete in today’s global economy. The problem with past 

solutions is that integration efforts have taken too long, and we have created inflexible, 

hard-to-change architectures. The stigma of planting the seed of technology and waiting 

until it grows into a mature product, much like the proverbial bamboo tree

5

, is a relic of 

what could be considered the golden age of industry-sponsored computer research. The 

ALV project is an attempt to show that cutting edge research can lead to immediate 

solutions for industry. 

The choice of MySQL running on the Windows server platform has introduced a 

number of unexpected limitations that have required some amount of additional work. 

For example, although MySQL is designed to run on a wide variety of platforms, the 

                                                

3

 A concept that traditional software industry (Microsoft et. al.) has to date failed to see the wisdom of 

sponsoring. 

4

 MySQL is a registered trademark and product licensed to MySQL AB. http://www.mysql.com  

5

 The Chinese bamboo tree must be cultivated and nourished for four years with no visible signs  of growth; 

however, in the first three months of the fifth year, the Chinese bamboo tree will grow 90 feet.  
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preferred development platform is Linux

6

. Consequently, some of the development tools 

are not available on the Windows platform. Furthermore, many of the debugging 

capabilities are lost as a result. Despite these issues, the project has been successfully 

developed and tested. Future plans include porting the source code to Linux for further 

refinement and evolution. 

 

3.2 Advanced Storage and Retrieval Mechanism 

Storage engines are the life of a database system. Although query optimization 

and query execution comprises a significant amount of the processing time that database 

systems expend, it is the storage facilities that the system relies on to be fast, efficient, 

and scalable. Without a fast storage and retrieval mechanism, database systems cannot 

fulfill the needs of their users. When users query a database for information, they expect 

answers immediately. If the system must navigate a complex or inefficient file system, 

performance will suffer and users will eventually abandon it. 

The storage engine for ALV is designed to be both fast and efficient with respect 

to query response time. A common theme throughout this project is to sacrifice space and 

memory whenever doing so will enable faster access or processing. Today the cost of 

disk space is more economical than memory or processor technology. 

Since the storage engine is an extension of the relational model and subsequently 

an extension of the host database system, the storage engine requires a reference to an 

original host record. This reference becomes the primary indexing or storage organization 

                                                

6

 Considered by MySQL AB as the “only” platform worthy of true server -level development – other 

platforms are supported only as a convenience for d evelopers and integrators.  
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parameter. Thus, each item stored in an ALV file references another entity stored 

elsewhere in the host system. This concept is applied at the table level, enabling each 

table to be versioned. This creates a one-to-many relationship between a table and the 

ALV version store

7

 for that specific table. Thus, the storage engine provides access to all 

of the version data by extending the relational database system to include a version store 

for each table store. 

The storage engine for ALV is implemented using a clustered storage mechanism 

that ensures that all attributes for a given host record are stored in the same series of 

storage blocks on disk. This permits fast retrieval for all of the attribute versions for a 

given host reference (tuple). Attribute versions are sets of attributes containing the 

attribute value, metadata (user defined), the reference to the host tuple, and pointers for 

linking attribute versions for the same attribute together. Each set of attribute versions is 

saved as a structure within a block of data on disk.  

These structures are placed in a section of a file called a block

8

. Files on disk are 

accessed one block at a time. The sizes of blocks are largely implementation dependent, 

but typical sizes are 512kb and 1024kb. When files are used to store data such as the data 

stored in database systems, the data must be partitioned so that objects are stored within 

the block size specified. When more than one object can fit into a single block, additional 

care must be taken to fill the block with data. Another consideration is whether to permit 

objects to span across one of more blocks. The ratio of objects to blocks is referred to as 

                                                

7

 Version store is the logical term applied to a set of attribute versions organized into a single file and 

organized using a clustered mechanism.  

8

 Sometimes referred to in the literature as a page.  
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the blocking factor [Date04]. Many of the concepts of file systems such as paging 

algorithms, data compacting (packing), the recovery of delete blocks, etc., are used in 

constructing storage engines for data. 

Most file systems provide mechanisms to buffer the blocks read to memory. Some 

buffering techniques provide read-ahead algorithms that attempt to anticipate the next 

block needed [Kim88]. The technique used in buffering to manage the blocks in memory 

is called paging

9

. Some file systems provide mechanisms to read more than one block at a 

time. Many of these file systems contain buffering mechanisms [Kim88]. Systems 

designers can take advantage of this feature by grouping objects together in a set of 

blocks called a cluster. Cluster technology is the main technique employed in the ALV 

storage engine.  

Attribute versions are stored unordered within a block of data on disk. A mapping 

mechanism consisting of a lookup table is stored at the front of the file and provides the 

mapping of each attribute version (similar in many ways to a tuple or “record

10

” layout). 

Another map, used at the front of each data block, contains the address (offset) of each of 

the attribute version linked lists (specifically, the first node or “head” of each list). 

Storing all of the attribute versions for a referenced record within the same block on disk 

will yield a higher retrieval performance than more traditional interlaced record/block 

access mechanisms. Thus, the version store is a clustered version store optimized for fast 

retrieval of attribute versions and attribute version chains. 

                                                

9

 Thus the tendency for researcher to refer to blocks as pages. 

10

 The temptation to use the term “record” is powerful. In many respects, the colloquial expression “record” 

is more recognizable. The author shall refrain from this ambiguity wherever possible.  
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The blocks in the file are maintained using a queue which manages a free block 

list. The queue enables the fast recovery of unused data blocks without needing to 

compress or reallocate the data on disk. The buffer management algorithm uses the free 

block list to reclaim blocks on disk and order them sequentially whenever space allows. 

The size of the blocks is adjustable and can be set to maximize the host operating 

system’s file system performance. 

A page replacement algorithm is used to reclaim space within the data block as 

attribute versions are deleted. This algorithm walks the file, moving the next block of 

data into the first available block at the front of the file. This process continues until all 

empty blocks are filled, thus leaving empty blocks at the end of the file. The algorithm 

completes by initializing the free block queue and truncating the file at the first empty 

block. A block extension mechanism is provided to allow the overflow of data across 

multiple blocks, which form a linked list on disk. Thus the blocks that comprise the set of 

all attribute versions are also used as a parameter in the buffer manager as a heuristic in 

predicting access paths for faster retrieval of sequential attribute version reads. Figure 3-1 

depicts the layout of the ALV file storage. 

Auxiliary mechanisms are used to provide direct access to the data on disk. These 

mechanisms are called indexes. Indexes allow systems to read data for a particular object 

by reducing the number of reads to a single read for the block that contains the object. 

Note: sequential file reads (also called a table scan) do not require the use of an index. 

The index mechanism returns a block number and offset for the first attribute version 

referenced in the index criteria (see section 3.4 for more about the index mechanism). 
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The index and cluster mechanism combine to provide a minimal number of block reads 

from disk. Minimizing block reads from disk, which are the most costly of all operations 

save writing to disk

11

, will ensure that the storage engine is as efficient as possible. 

 

Reserved Space

� Free Block Numbers

Block 1

Reserved for Metadata

� Metadata Id

� Metadata Name

� Metadata Data Type

� Metadata Output Width

And Column Data

� Column Id

� Column Name

Stored as Attributes

Block 2 Block N

File Header

� Block Size

� Reserved Space Size

� File Status

 

Figure 3-1: The ALV File Storage Layout 

 

 

Writing data in the storage engine isn’t as efficient as reading from it. The 

clustered mechanism is a bit more complicated whenever data is inserted. If there is space 

available in the version store for a new attribute version, the performance is fast. 

However, if an attribute version is to be inserted in a block that does not have space 

available, an extension for that block is created and the new data added to the new block. 

Although only slightly slower, this condition is affected by the block size chosen. 

Similarly, additional processing is required for inserting attribute versions into spaces left 

vacant from delete operations. Lastly, the buffer manager is designed to flush to disk any 

blocks in the buffer that have been written. The timing of the flush can be delayed, but 

studies show that immediate flush operations do not pose a performance problem in low 

concurrency situations. 

                                                

11

 Hardware optimization mec hanisms notwithstanding (e.g., RAID).  
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ALV provides a mechanism to store and retrieve all values for an assimilated 

attribute i.e. an attribute that has been identified as having duplicate values as a result of 

combining data from two or more data sources. Having a comprehensive version 

repository with efficient retrieval mechanisms permits scientists to perform additional 

analysis using advanced statistical and knowledge inference models that identify meaning 

or predict relationships among the data. Adding this new dimension of analysis opens a 

new chapter in the data-mining paradigm. Chapter 4 contains details of the 

implementation of the ALV storage engine. 

 

3.3 Advanced Query Mechanism 

A fast storage and retrieval mechanism is only half of the equation for a high 

performance database system. The system must also be capable of performing complex 

queries to retrieve answers from the data. The language of choice for queries is SQL 

[Date04]. The systems must translate query statements from high-level SQL to an 

executable sequence of sub-processes [Date04a]. Furthermore, this translation must be 

precise and repeatable, for the power of a database system is its ability to produce the 

same answer using the same data for the same query statement

12

 every time it is executed 

[Ston76, Ston81]. 

Implementing a solution for the ALV query processor in MySQL required 

modifying the MySQL parser and lexical analyzer. The MySQL parser was written using 

                                                

12

 There are often several permutations of the same query statement that result in the same answer. SQL is 

often criticized for its freedom of expressiveness. Fortunately, most database system implementers build 

their query mechanisms to accommodate this expressiveness.  
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Yacc and Lex. Lexical analyzer and parser technology are an area of research in compiler 

design and language theory. Database systems researchers often refer readers to compiler 

and language theory texts for implementation methods and explanation. As a result, SQL 

language extensions require the application of language theory in order to extend the 

MySQL parser to recognize and validate the new extensions. Modification of these 

systems required changing the lexical analyzer to recognize new tokens and changing the 

parser to recognize new patterns in the SQL language. The ALV SQL, named SQL

ALV

, 

extensions are designed to mimic those of SQL, representing the typical data 

manipulation commands such as select, update, insert, delete as well as the typical data 

definition commands such as create and drop. Samples of these commands are shown in 

table 3-1 below. A complete explanation of these commands and their implementation is 

discussed in Chapter 6.  

The parser and lexical analyzer in MySQL identifies strings of alphanumeric 

characters (tokens) that have been identified in the parser. The parser tags all of the 

tokens with location information (order of appearance in the stream), and identifies 

literals and numbers using logic that recognizes specific patterns of the non-token strings. 

Once the parser is done, control returns to the lexical analyzer. The lexical analyzer is 

designed to recognize specific patterns of the tokens and non-tokens. Once valid 

commands are identified, control is then passed to the execution code for each command. 

The MySQL parser and lexical analyzer was modified to include the new tokens 

(keywords) for the SQL

ALV

 commands and the lexical analyzer was modified to identify 

and process the new SQL

ALV

 commands. 
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Sample SQL

ALV

 Commands 

SELECT ALV * FROM myTable WHERE ALV_KEY = ‘Tower1’; 

CREATE ALV TABLE abc KEY xyz INTEGER ATTRIBUTE (a VARCHAR(10), b 

INTEGER INDEXED, c VARCHAR(100)), ATTRIBUTE (d VARCHAR(10), e INTEGER, 

f VARCHAR(100)); 

DROP ALV MyTable; 

INSERT ALV INTO abc FOR 123 (a,b,c) VALUES ('a','b','c'); 

DELETE ALV flow FROM myTable where ALV_KEY = 90125; 

UPDATE ALV abc FOR flow SET b = 1, c = 3 WHERE ALV_KEY = 90125; 

SHOW ALV DATABASES; 

SHOW ALV TABLES; 

Table 3-1: Sample SQL

ALV

 Commands 

 

 

The ALV query processor represents an application of advanced query 

optimization techniques that translate SQL

ALV

 queries into executable form. A close 

examination of the MySQL query optimizer shows that its implementation is tied too 

closely to the internal query representation of MySQL to permit modification without a 

major redesign [MySQ05]. The MySQL structure is a class-based structure that has 

numerous lists that hold the parts of an SQL statement; many of these lists are lists of 

base classes that are overridden by derivative classes. Although iterators are provided to 

ease the complexity, the query optimizer and the execution engine are written to exploit 

these lists and the class-based hierarchies, making this portion of the source code in 

MySQL the most complex

13

 and the most difficult to modify. Furthermore, the internal 

representation does not provide a mechanism that is viable for the query optimizer for 

version queries.  

Rather than modify the mechanisms in place, a new query processor specifically 

for the ALV data store and SQL

ALV

 commands was created. This permitted not only an 

                                                

13

 Called the “genius code factor” whereby the code is unintelligible to all save the author.  
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opportunity to explore advanced implementation of query optimization theory, but it also 

permitted the core of the ALV technology to execute without modification of the MySQL 

internal operation. This gives the additional security that the native MySQL core 

executable code will not be affected by the addition of the ALV technologies. This added 

benefit helped mitigate some of the risk of modifying an existing system as seen by the 

project sponsors. A comparison of the ALV query processor and native MySQL query 

processor is presented in Chapter 6. 

The implementation of the parser allowed the code that directs control to specific 

instances of the execution sub-processes

14

 to be written to redirect processing to the ALV 

query processor. The first step in that process is to convert the SQL

ALV

 commands into an 

internal representation. The internal representation chosen is called a query tree, where 

each node contains an atomic relational operation (select, project, join, etc.) and the links 

represent data flow. For example, a join operation is represented as a node with two 

children. As data is presented from each child, the join operation is able to process that 

data and pass the results to the next node up in the tree (its parent). Each node can have 

zero, one, or two children and has exactly one parent.  

The query tree was chosen because it permits the query optimizer to use tree 

manipulation algorithms. That is, optimization uses the tree structure and tree 

manipulation algorithms to arrange nodes in the tree in a more efficient execution order. 

Furthermore, execution of the optimized query is accomplished by traversing the tree to 

the leaf nodes, performing the operation as specified by the node and passing information 

                                                

14

 Implemented as a huge SELECT -CASE statement in sql_parser.cc.  
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back up the links. This technique also made possible execution in a pipeline fashion 

where data is passed from the leaf nodes to the root node one data item at a time.  

Traversing the tree down to a leaf for one data item and returning it back up the 

tree (pulsing) permits each node to process one data item, returning one row at a time in 

the result set. This pulsing, or polling, of the tree permits the execution of the pipeline. 

The result is a faster initial return of query results and a perceived faster transmission 

time of the query results to the client. Witnessing the query results returning more 

quickly – although not all at once – gives the user the perception of faster queries. 

Chapter 6 contains a complete explanation of the query tree and optimizer algorithms.  

 

3.4 Advanced Index Mechanism 

The storage mechanism previously discussed would be merely practical without 

the aid of an advanced indexing mechanism. That is, accessing data using the storage 

mechanism provides faster access to data using sequential access methods, but does not 

provide a random access mechanism – an index. This indexing mechanism is vital to the 

success of the versioning technology being created. Without a means of quickly 

accessing the attribute versions, the solution would be no more efficient than any other 

versioning strategy. It is this area that will provide the most advancement to the computer 

science discipline. 

The indexing mechanism is designed using the B+ Tree algorithm and structure 

[Rao00]. A B+ tree is a balanced multi-way tree that stores pairs of index keys and block 
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addresses in the nodes

15

[Jann95]. However, unlike most applications that utilize B+ Trees 

that apply an external buffer management subsystem (if at all) and provide concurrency 

access using semaphores or mechanisms provided by the operating system or another 

application, the new algorithm and structures will implement the B+ Tree as a buffered 

balanced search tree that supports concurrency [Bato81]. That is, the internal nodes of the 

tree will have constructs designed to support these mechanisms natively. This is possible 

because each node of the tree is stored in a single block on disk. The application of a 

buffer provides faster access to the blocks in the tree by maintaining a cache of frequently 

accessed tree nodes. Chapter 5 provides additional details of the indexing mechanism and 

its implementation. 

Research on query language and query optimization has also revealed a need for 

another variant of this tree mechanism that supports multiple values for the data reference 

pointers within the leaves [Lank91, Mcke01, Mond85]. This is necessary because 

existing B+ trees do not provide a means of having multiple block addresses (attribute 

versions) for each key. The variant provides the ability to index the versions so that 

queries can identify all of the host records that contain versions of a given set of attribute 

versions and their values (one tree per attribute value). In addition, a multivalued B+ Tree 

is necessary to support the indexing of the file in such a way as to discover all of the 

records that contain a given set of attribute values. This query will be used to quickly 

identify the data that is versioned. Likewise, it also necessary to provide an index that 

                                                

15

 Actually, there are many variants of B+ tree s. This work uses the B+ tree variant that maintains block 

addresses only on the leaves and links the leaves together, permitting range and sub -range iteration without 

repeated traversals of the tree.  
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discovers all of the records that have a given set of attribute versions. Without this 

variant, the queries described above would require a complete traversal of the index 

followed by (or in conjunction with) a walk of the entire file. The variant would eliminate 

numerous block accesses and thereby increase the efficiency of the storage mechanism.   

The traversal of the tree is implemented using the traditional mechanisms for B+ 

Trees. Since each node of the tree will have an ordered array pointing to multiple child 

nodes, the search for a particular value within a node will use a linear search algorithm to 

locate the value quickly.  

 

3.5 Data Mining Algorithm Applications 

Data mining is a term used and overused in industry and to a lesser extent in 

scientific research. The term data mining has taken on a number of definitions depending 

on your point of view. Some consider data mining a step in a larger context of knowledge 

discovery while others generalize data mining to be the extraction of knowledge. This 

work has chosen the later approach. In this work, data mining is the process of 

discovering knowledge from data using algorithms designed to identify associations and 

categorizations among the data [Han01]. Some texts associate data mining with machine 

learning [Witt05]. However, machine learning is the application of programming 

methods that permit the improvement of software systems by analyzing examples of 

desired behavior rather than by direct programming [Rals03]. Thus, the application of 

data mining algorithms may lead to machine learning, but it is incorrect to conclude that 
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data mining is machine learning. In this work, data mining is viewed as a method by 

which one can enable machine learning.  

An application of machine learning algorithms is finding interesting correlations 

within the data in databases. Algorithms in this area specialize in statistical analysis of 

results to form patterns or discover relationships among the data [Dynh03]. The learning 

part of this process is the knowledge discovery that the patterns provide. This knowledge, 

if acquired using sound statistical models, represents information that may not normally 

be ascertained using normal query operations. For example, suppose a large database of 

financial transactions was queried to discover the highest selling items. This is clearly 

easily obtained using normal query mechanisms. However, consider a query that can 

identify buying patterns among goods by certain classification of customers. This 

information could be obtained using a series of queries, but the time necessary to analyze 

the data and form the patterns through results of the queries is too great. If a clustering 

algorithm is run against the data, these sales patterns could be identified much more 

quickly with a high degree of confidence. 

The last research area of this dissertation is the application of new data-mining 

algorithms for knowledge discovery.  The goals of the data-mining algorithms for this 

project include those algorithms that classify, categorize, and predict values and 

correlations among the attribute versions. The Achilles heel of most data-mining 

algorithms is the static nature by which the algorithms operate. Most operate only on data 

that remains constant. They fail to adapt or scale well (if at all) to changes in the data, 

producing results with less predictability when the data is changed. An algorithm that can 
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scale and adapt would be the best for the types of analysis that this project will support 

[Dynh03].  

 

The existing algorithms can be categorized into the following categories 

[Dynh03]: 

 Classification – maps data into predefined groups or classes 

 Regression – maps a data item to a real valued prediction 

 Time Series Analysis – analyses trends in data over time 

 Prediction – a form of classification that maps data into groups based on what 

may occur in the future 

 Clustering – maps data into groups based on values in the data 

 Summarization – maps of data into subsets and provides summary information 

 Link Analysis – discovers relationships in the data 

 Sequence Discovery – identifies patterns in the data 

 

These algorithms are designed to operate on data presented in a fixed structure 

(cube) that is an implementation of a relational database table. None of the algorithms 

accept data dimensioned by versions of the attributes. If you consider the cube structure 

as a three dimensional table with rows, columns, and planes, the ALV data is an 

additional dimension or extension of each of the planes. The algorithms introduced by 

this work provide summarization and clustering of the ALV version data. 
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It is hypothesized that the existing realm of algorithms, with some modification, 

may be sufficient to meet the goals of discovering predictable trends and non-intuitive 

associations within the data. Another hypothesis suggests the common data structure used 

in data-mining, the online analytical processing cube, may not adequately represent the 

versioned data. A new variant or alternative structure may be necessary to store the data 

for the data-mining algorithm to process. Another hypothesis suggests the structure and 

semantics of the Web Ontology Language (OWL

16

) [Anto04] may be a viable alternative 

to the cube structure. If this alternative is viable, it could lead to more discoveries in the 

effectiveness of data-mining algorithms and their tolerance to changes in the data. The 

most difficult aspects of this portion of the project will be forming the data into structures 

that can be consumed by the data-mining algorithms. Research in this area crosses the 

boundaries of artificial intelligence, machine learning, information retrieval, statistical 

analysis, and knowledge management.  

 

3.6 Application of Emerging Technologies in Conjunction with ALV 

Much of what makes the ALV concept unique is the storage and retrieval of 

versioned data. However, the research for this project does not address the question of 

how data is identified as an alternative to existing values. In other words, how do we 

know there are duplicates or that these duplicates should be considered versions? 

Furthermore, why should we care? 

                                                

16

 Many people wonder how OWL got its name. Some are surprised that the Web Ontology Language is 

nicknamed OWL in honor of Owl in Winnie the Pooh (milne, 1996), who spells his name “WOL.”  
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Recently, manual database coordination was successful in solving the Washington 

sniper case. Jonathon Alter of Newsweek described the success as: “It was by matching a 

print found on a gun catalog at a crime scene in Montgomery, Ala., to one in an INS 

database in Washington state that the Feds cracked open the case and paved the way for 

the arrest of the two suspected snipers. Even more dots were available, but [they] didn’t 

get connected until it was too late, like the records of the sniper’s traffic violations in the 

first days of the spree,” [Alte02]. 

If law enforcement agencies had the ability to assimilate and deconflict data 

among all of the databases they referenced and to place that data into a versioning 

system, they might have been able to draw inferences as to how seemingly independent 

events

17

 were in fact related by a common thread – the snipers. 

How would one track such data? The real utilitarian power of ALV is in the 

ability to associate metadata with each attribute version. This allows researchers to record 

pertinent data with each attribute version such as time of event, duration, source of the 

information

18

, and other important facts. These metadata – facts about facts – give ALV 

the ability to become a powerful tool in data compilation and exploitation. 

The most intriguing use of ALV in emerging technologies is in the inference of 

semantic data. Metadata is a starting point for semantic representation and processing. 

The rise of metadata is related to the ability to reuse metadata between organizations and 

systems. Likewise, the ability to exchange this metadata (data in general) between 

                                                

17

 Events stored in database systems without context of the actors and related events relegates them to 

discrete points in t ime. The ability to link those events and actors through a flow of data using versioning is 

the goal of ALV. 

18

 Also known as the originator.  



www.manaraa.com

Bell 2005 – Attribute-Level Versioning: A Relational Mechanism fo r Version Storage and Retrieval   86  

 

organizations has enabled communication and data sharing between legacy systems 

through a common format. The most popular common format is XML [Fens03]. The 

success of XML can be attributed to the following: 

 

 XML creates application-independent documents and data. 

 It has a standard syntax for metadata. 

 It has a standard structure for both documents and data. 

 XML is not a new technology. 

 

Metadata alone cannot solve problems like the D.C. sniper case described above. 

The accumulation and processing of metadata alone cannot be used to draw inferences 

from the data. Additional technologies are needed to apply meaning (semantics) to the 

data. 

One of the many goals of semantic web technology is the mapping of data to 

relationships and from there making inferences. This is accomplished by forming 

ontologies of the data. An ontology models the vocabulary and meaning of domains of 

interest: the objects (things) in domains; the relationships among those things; the 

properties, functions, and processes involving those things; and constraints on and rules 

about those things. In broadest terms, an ontology is; 1 : a branch of metaphysics 

concerned with the nature and relations of being, 2 : a particular theory about the nature 

of being or the kinds of existents. 
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There have been breakthroughs that have led to a flurry of implementation and 

product jockeying by industry. Ontology is one of those breakthroughs. Unfortunately, 

most information technology experts are bombarded with marketing hype that obscures 

the finer details of the technology. For example, a distinction is made between “big O” 

Ontology and “little o” ontology. “Big O” Ontology is the philosophical discipline. 

“Little o” ontology is the information technology engineering discipline that has emerged 

over the past eight or so years. The application of ontology in computer science today is 

grounded in the “little o” ontology. More precisely, the application of ontology defines 

the common words and concepts (the meaning) used to describe and represent an area of 

knowledge. Similarly, the result of the application (creation) of an ontology is an 

engineering product consisting of “a specific vocabulary used to describe [a part of] 

reality, plus a set of explicit assumptions regarding the intended meaning of that 

vocabulary” – in other words, the specification of a conceptualization. The recent 

computational discipline that addresses the development and management of ontologies 

is called ontological engineering [Anto04]. 

Ontologies form a model of the data that includes not only relationships, but also 

behavior. This data model requires three levels of representation. First, the knowledge 

representation level must provide a way to represent the data – this is where the ALV 

technology will be used. Second, the ontology concept level is where ontologies and 

ontology hierarchies are formed. A related area of study is known as metaontologies or 

ontologies of ontologies [Grun02]. Third, the ontology instance level is necessary to store 
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the ontology for processing by inference engines that operate on the data. The repository 

of choice for this level is a graph store. 

Once a model is created for the data, the model can be exploited to infer meaning 

among the data. Modeling the data allows for quick adaptation to changing data, 

relationships, and even intent of the model. It is much simpler to change the model (the 

description) than a thing that, without the model, has no well-defined semantics. Without 

a model, you are perpetually doomed to try to correlate tuples in multiple databases that 

have no accompanying semantics. This is why data mining and its parent, knowledge 

discovery, are such hot technologies now – this is the way we usually do things. No 

model, no semantics. So we try to infer the semantics, or what the data means. This is a 

very difficult problem – one that isn’t easily solved by simply writing code. Research into 

the application of semantic methods combined with advanced storage mechanisms and 

inference engines using data-mining algorithms is a reasonable start to solving the 

problem. 

The Semantic Web technologies have proven to be a viable alternative to creating 

a custom application for the data assimilation and deconfliction needs of the ALV project 

[Anto04, Magk02]. Ontologies may prove to be a medium to support the data-mining 

algorithms. These and other emerging technologies are explored and reported in this 

work. Supporting research is presented and represents a context in which the ALV system 

will be used.  
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3.7 Conclusion 

The body of knowledge that is computer science has evolved into a distinct 

discipline characterized by three basic paradigms; theory, abstraction, and design, with 

fundamental roots in both mathematics and engineering. Functionally, computer science 

is the systematic study of algorithmic processes concentrating on the theory, analysis, 

design, efficiency, implementation, and application of systems that describe and 

transform information [Tuck04].  

The central sub-discipline of computer science that forms the foundation for this 

work is concentrated on is database theory. This work explores topics in database theory 

such as physical design of structured data stores, query processing, query optimization, 

indexing mechanisms, concurrency, and disk buffering. The successful implementation of 

the project demonstrates application of each of these areas. This work examines the 

implementation with sufficient academic rigor to illustrate the benefits and applicability 

of the project to support these areas of database theory. 

The newest sub-discipline of computer science applied to this work is in the area 

of classification and categorization algorithms, specifically referred to as data mining. 

The algorithms designed to enable knowledge discovery are grounded in sound statistical 

practices

19

. These algorithms require processing of large portions of data as well as the 

need to process the calculations quickly. Considerable effort was undertaken to ensure 

                                                

19

 Some texts on data mining go so far as to say data mining is an application of statistical theory. 

Regardless of one’s point of view, it is clear data mining algorithms must exhibit the tenets of sound 

statistical practices.  
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adherence to the foundations of data mining from the viewpoint of computer science with 

the goal of maintaining a sound statistics-based application. 

The goal of the research in this work is to abstract the salient features of the 

identified computational tasks in order to permit the development of the versioning 

capability in a setting unencumbered by insignificant details. The motivation for the 

solutions examined may have arisen from an application or from purely foundational 

considerations. In the former case, new abstract models are introduced that will be useful 

in designing and analyzing algorithms in the project. In the latter case, practical 

applications of emerging technology are introduced as a by-product of the solutions. 

Utilization of the body of computational theory enabled the theoretical portions of this 

work as been guided by the historical precedence of past work, the present-day realities 

of computing, and helps to ensure the relevance of the work to the future practice of 

computing.  

 

3.8 To be continued… 

This work is intended to contribute to the body of knowledge that is computer 

science. These chapters comprise the bulk of the knowledge learned, technologies 

created, and theory advancements of this work. The general format of each chapter is as 

follows: 

 Abstract – a short description of the subject matter discussed. 

 Introduction – an introduction and background information for the 

technology being developed or explored. 
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 Technology Description – one or more sections for each area of the theory 

and implementation researched. 

 Analysis – a description of alternatives, comparisons and experiment results 

are presented. 

 Conclusion – the overall conclusion of the work as it relates to the 

advancement of science is presented. 

 Future Work – a short description of areas of exploration available for 

expansion of the work presented. 

 

Chapter 8 will conclude this work, its research, and supporting project. A 

presentation of the avenues for future work and future exploration of implementation of 

the ALV project and its technologies will conclude this work. 
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Chapter Four - A Clustered Storage Mechanism for Versioning 

 

 

 

Abstract 

Clustering or co-locating data that is retrieved as a set increases performance of 

the retrieval system [Tuck04]. This premise motivates the development of a clustered 

storage mechanism that stores and retrieves versioned information. This chapter shows 

one implementation of a clustered version store and reports its performance as compared 

to a commercially available storage mechanism. 

 

4.1 Introduction 

A clustered storage mechanism can provide the foundation for a versioning 

system supported in a relational database system. This chapter presents a clustered 

version store for storing and retrieving versioned data within a versioning system. This 

system, called Attribute-Level Versioning (ALV), is an extension of the MySQL 

database management system.  

The following sections present the current research on physical database design 

and implementation, the technology and design of the clustered version store, analysis of 

the performance of the mechanism, and a conclusion as to its success in meeting the goals 

defined above. This chapter concludes with a section outlining future work opportunities 

to improve the clustered version store. 
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4.2 Background 

Physical database design has been important since the very early days of database 

system development. However, the practice has become less emphasized due to the 

effectiveness and simplicity of common file systems supported by operating systems. 

Today, physical database design is merely the application of file storage and indexing 

best practices

1

.  

There are set clear goals that must be satisfied to minimize the I/O costs in a 

database system. These include utilizing disk data structures that permit efficient retrieval 

of only the relevant data through effective access paths, and organizing data on disk such 

that the I/O cost for retrieving relevant data is minimized. Both of these goals are 

addressed in physical database design [Grae93, Marc83]. An overriding performance 

objective is thus to minimize the number of disk accesses (or disk I/O’s) [Date04a]. 

There are many techniques and opinions on how to approach database design. 

Fewer exist for actual physical implementation. Furthermore, many researchers agree that 

the optimal database design (from the physical point of view) is not achievable in general 

and furthermore should not be pursued. This is mainly due to the much improved 

efficiency of modern disk subsystems. Rather, it is the knowledge of these techniques and 

research that permit the database implementer to implement his database system in the 

best manner possible to satisfy the needs of those that will use the system [Seve77]. 

In order to create a structure that performs well, many factors must be considered. 

Early researchers considered segmenting the data into subsets based on content or context 

                                                

1

 Such as separating the index file from the data file placing each on a separate disk I/O system to increase 

performance. 
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of the data. These subsets are organized in similar groups as that of the physical database 

design. For example, all data containing the same department number would be grouped 

together and stored with references to the related data. This process can be perpetuated in 

that sets can be grouped together to form supersets, thus forming a hierarchical file 

organization [Senk73]. 

Accessing data in this configuration involves scanning the sets at the highest level 

to access and scan only those sets that are necessary to obtain the desired information. 

This process significantly reduces the number of elements to be scanned. The researchers 

also desired to keep the data items to be scanned close together to minimize search time. 

Researchers call the arrangement of data on disk into files and the structured storage of 

those files as file organization. The goal was to design an access method that provided a 

way of immediately processing transactions one by one, thereby allowing us to keep an 

up-to-the-second stored picture of the real-world situation [Sek73].  

File organization techniques were revised as operating systems evolved in order 

to ensure greater efficiency of storage and retrieval. Modern database systems create new 

challenges for which currently accepted methods may be inadequate. This is especially 

true for systems that execute on hardware with increased disk speeds with high data 

throughput. Additionally, understanding database design approaches, not only as they are 

described in textbooks, but also in practice will increase the requirements levied against 

database systems and thus increase the drive for further research [Hain03]. For example, 

the recent adoption of redundant and distributed systems by industry has given rise to 
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additional research in these areas in order to make use of new hardware and/or the need 

to increase data availability, security, and recovery. 

Since accessing data from disk is very expensive, research has shown that the use 

of a cache mechanism, sometimes called a buffer, can significantly improve read 

performance from disk thus reducing the cost of storage and retrieval of data. The 

concept involves copying parts of the data either in anticipation of the next disk read or 

based on an algorithm designed to keep the most frequently used data in memory. The 

handling of the differences between disk and main memory effectively is at the heart of a 

good quality database system. The tradeoff between the database system using disk or 

using main memory should be understood. See table 4-1 for a summary of the 

performance tradeoffs between physical storage (disk) and secondary storage (memory). 

 

Issue Main Memory VS Disk 

Speed Main memory is at least 1000 times faster than Disk 

Storage 

Space 

Disk can hold hundreds of times more information than memory for the 

same cost 

Persistence When the power is switched off, Disk keeps the data, main memory 

forgets everything 

Access Time Main memory starts sending data in nanoseconds, while disk takes 

milliseconds 

Block Size Main memory can be accessed 1 word at a time, Disk 1 block at a time 

Table 4-1: Performance Tradeoffs  

 

 

Advances in database physical storage have seen much of the same improvements 

with regard to storage strategies and buffering mechanism, but little in the way of 

exploratory examination of the fundamental elements of physical storage has occurred. 

Some have explored the topic from a hardware level and others from a more pragmatic 

level of what exactly it is we need to store. Stonebraker in his paper on multi-level 
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storage examines the possibility that systems must store data not only on disk and in 

memory for fast retrieval but also to/from tertiary storage such as magnetic tape and other 

archival systems [Ston94a]. The subject of persistent storage has been largely forgotten 

due to the capable and efficient mechanisms available in the host operating system. 

 

4.2.1 File Organization Techniques 

Beneath the layers of physical database design lies the file organization layer. 

This layer has perhaps the most effect on the performance and efficiency of data retrieval. 

Indeed, this layer is responsible for many of the performance challenges related to 

database system implementation. There have been many techniques which differ greatly 

in their sophistication and implementation benefits. Depending on the nature of the data 

operations (insert, delete, update), retrieval (sequential or random), size of the data 

retrieved, etc., some techniques perform better than others. Performance issues can be 

compounded by the wide variety of file organization techniques and their idiosyncrasies 

and implementations. Designers of database system are often faced with making choices 

in file organization that deal with tradeoffs and compromises. This can be made all the 

more problematic when trying to determine or predict the performance of particular 

structures [Yao76]. 

There has been research into modeling file organizations in order to gain 

understanding of the function and performance of file organizations. There are two 

distinct categories of modeling, simulation and analytical. Simulation deals with repeated 

runs of experimental scenarios to check the operation and performance of models without 
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live systems. Analytical deals with repeated implement-test-measure-compare scenarios 

that evaluate different implementations in near live environments. Models have been 

evaluated using techniques such as multi-list, inverted file, and doubly-chained tree 

organizations. In addition, simulation models have been used to compare indexed 

sequential and direct access methods. Unfortunately, these simulations are based on 

individual file structure models and thus do not provide a common baseline for 

comparing performance of a set of file organizations [Yao76]. 

 

4.2.1.1 Access Methods 

One of the areas to receive a great deal of attention is called access methods. This 

area is concerned with the identification of all necessary resources and execution 

mechanisms necessary to retrieve, update, and insert data. A single instance of these 

items to access a single datum is called an access path. The access path therefore contains 

all of the algorithms, cache mechanisms, and execution sequences necessary to execute 

the command. A large amount of research concerns the optimization of the access path. 

i.e. the minimization of resources necessary to complete the operation. 

An access path is formed by user interaction with the system and the system’s 

availability of methods by which data is retrieved and presented to the user. An access 

path therefore is the set of algorithms and structures that are used to store, retrieve, and 

update portions or sets of data [Marc83]. Research has produced a set of guidelines that 

should be followed to successfully optimize file organization and buffering techniques 

[Elma03]. These include: 
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 Analyze the queries and transactions to discover frequently used operations 

 Analyze the expected frequency of queries and transactions 

 Analyze the time constraints of queries and transactions 

 Analyze the expected frequency of update operations 

 Analyze the uniqueness constraints on attributes 

 

Research has also identified properties that are used to measure the goodness of 

access methods [Ras03, Tuck04]. 

 

 Data should be stored in associated groups according to anticipated queries. 

 Disk space should not consume more space than is necessary to ensure efficient 

storage and retrieval of data.  

 Data accessed should not return unnecessary or irrelevant data. 

 Inserts and deletes should modify no more than one page at a time in order to 

avoid blocking reads of other data in the block (inserts and deletes should not 

prohibit reading of unrelated data). 

 

The application of these techniques will ensure that the access methods employed 

will be designed with efficiency and optimization. 
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4.2.1.2 Extended Blocks 

Associating data that has group membership characteristics can be problematic. 

When data is added to a database, particularly when data is added to physical storage that 

already has data with which the new data can be associated, it is not always possible to 

physically locate the data together. In fact, in a high use environment where many reads 

and writes as well as updates occur, data can often become fragmented on the physical 

media. 

Although there are offline techniques

2

 available for reorganizing the physical 

store and restoring most of the benefits of collocating data, it is important to build into 

the system the ability to leave blank spaces for inserting data, thereby allowing 

reorganization the physical store less often. 

One method of ensuring available space for data is using additional pages as 

overflow space for data that does not fit on a single page. A pointer is used to record the 

next page in the file that contains the rest of the data. This method is sometimes referred 

as spanning [Elma03]. In ALV, a similar mechanism is used utilizing two pointers 

forming a doubly-linked list, so that data can be access both forward and in reverse. This 

mechanism is referred to as extending the page. The additional pages are called extents of 

the first page. 

 

                                                

2

 In this case, offli ne means that the database must be taken out of use and the reorganization performed in 

isolation.  
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4.2.1.3 Free Blocks 

A technique related closely to extended blocks (spanning) is the intentional 

retention of blocks in the physical store after deletions. That is, when all of the data in a 

block is deleted, the block remains allocated in the physical store and is marked as empty 

or available. A list of available blocks is called a free block list [Rama03]. The 

maintenance of available blocks in the physical store is typically very practical and 

usually involves the application of a simple data structure such as a list or queue. ALV 

uses a queue stored in the file header that manages the free block list. A queue permits 

the free blocks to be used in the order they were released thus permitting the free space to 

be recovered before appending new blocks to the end of the file. 

 

4.2.1.4 A Comment about Data Independence 

C.J. Date defined data independence as "immunity of applications to change in 

storage structure and access strategy." Modern database systems offer data independence 

by providing a high-level user interface through which users can interact with the data 

using concrete logical organizations (e.g., rows, tables, databases), rather than through 

variables, pointers, arrays, lists, etc. which are used to store the data internally in the 

database system. Thus, the database system is responsible for choosing an appropriate 

internal representation for the data which can change without affecting the users and their 

use of the data [Cham81a]. This internal representation is the subject of this work; 

indeed, the very focus of the ALV clustered version store. 
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Physical data independence is an abstraction concept in which the portions of the 

system that process data for query processing do not rely on specific mechanisms of how 

the data is stored on the physical media. There are three essential capabilities that 

database systems must provide in order to achieve physical data independence. First, the 

system must permit the use of alternative representation of data. Second, queries resulting 

in changes to the data must map correctly to all relevant data on the physical storage 

media. Third, if the physical design permits multiple access paths, the results of 

traversing all access paths must result in the same data being accessed, i.e. the same 

query results [Grae93]. 

Thus, the design of the query processing and optimization engines must clearly 

take the physical database design options of the underlying database management system 

into account (e.g., the concept of "interesting orderings" in System R [Cham81a] and 

many other systems), and a physical database design tool must consider the capabilities 

of both the database system's file and index level as well as its query optimizer [Grae93]. 

 

4.2.1.5 Buffer Manager 

Data stored in a database system is subjected to a number of operations including 

insert, update, delete, and retrieve. These operations are executed in the form of a query 

against a target database. Every query therefore accesses at least one data item. Often 

these queries are small and execute quickly. However, due to the relatively high cost 

associated with moving the data from physical storage to memory for manipulation, most 

database systems must use mechanisms to minimize the number of I/O operations. In a 
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similar way, care must be taken to maximize the use of memory, making the optimization 

of the page replacement algorithm very important for the overall performance of the 

database system [Effe84].  

Computing systems that access large amounts of data often employ a cache to 

store the data in memory prior to use. Given that the overhead for this process is minimal 

compared to the savings of accessing data from memory rather than disk, the cache can 

improve performance significantly. For most systems, the cost of disk access is 100 or 

more times than that of memory access. In systems where the cache is implemented as 

virtual memory instead of real memory, an increase in the size of the buffer space may 

cause a decrease in performance due to increased competition for real memory between 

the program and the buffer [Sher76]. 

This cache area is often called a buffer. The buffer is organized as discrete pages 

with each page containing a page from a file. If a page requested is not found in the 

buffer, a signal is generated called a page fault. The buffer manager then reads the page 

from disk and stores it in the next available empty page in the buffer (demand paging). 

When all available pages are used, a page is made available by a replacement policy. If 

the data has been changed since it was placed in the buffer, it is written back to the disk. 

The buffer manager is very similar to the manager of virtual memory in operating 

systems [Maek87]. In fact, some researchers have suggested that memory mapped files 

can be used as a specialized form of a buffer. Using the operating system facilities for 

memory mapping like that of virtual memory could enable a more effective buffer access. 

Unfortunately, this concept is not a good fit with database systems because it is based on 
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the assumption of a relatively small process space, while it is not uncommon for data 

access in a database system to be very large [Sacc86]. 

A common mechanism used in some database systems to reduce the number and 

frequency of I/O operations is to maintain an internal memory buffer pool of the blocks 

most frequently used in the database. Access requests to this data are satisfied by 

searching the buffer for the data rather than accessing the physical media. Changes are 

written back to the physical media in a variety of ways – either a scheduled dump or a 

manual operation via an operator-initiated command. Examples of systems that have used 

this technique include Information Management System/360 (IMS) by IBM, and 

INGRES. Interestingly, INGRES uses the virtual memory pool of the host operating 

system (Unix) to satisfy this need. 

A buffer manager uses an in-memory cache to store data for faster access. Data in 

a physical store does not normally fit in the available memory space. Thus, the buffer 

manager is responsible for ensuring the pages needed are in memory when accessed. 

When there are multiple files being accessed and all of the pages in the cache are used, 

the buffer manager must decide which pages in the cache are no longer needed and 

replace them with the requested pages. This technique is called a buffer replacement 

policy. One of the most effective replacement policies is based on the time the page is in 

memory. This mechanism is called least recently used (LRU) [Elma03, Falo95].  

The process of loading pages from the physical store into memory has been 

implemented in a variety of ways and largely becomes a matter of preference or choice 

for database system implementers. The most frequently used method uses record ids that 
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map the pages in the internal memory buffer to that of the physical reference ids in the 

physical store. Using record ids for accessing data in files can greatly enhance the 

implementation and performance of buffer management systems that equate disk blocks 

with pages in memory [Date04a]. 

The most important aspect of buffer management implementation is the fact that it 

must be designed to optimize short-term data requests of higher level subsystems in such 

a way as to ensure the blocks of data stay in memory until written back to disk and 

flushed from the buffer [Elha84]. The lifetime of the data in memory is the time spent in 

the committed buffer pool until no longer needed as defined by the page replacement 

algorithm. 

The most popular replacement policy is least recently used (LRU), which replaces 

the page that has not been referenced for the longest time. LRU belongs to a family of 

algorithms called stack algorithms. One premise of the LRU algorithm is that an increase 

in available buffer space reduces the likelihood of an increase in the page fault rate. More 

importantly, the LRU strategy is well understood and simple enough to be implemented 

in any buffer manager. This is especially important as the buffer manager is one of the 

most heavily used system components [Effe84, Sacc86]. 

Since physical references are expensive, the optimization of the page replacement 

algorithm is very important for the overall performance of the system. Optimization in 

this case is concerned with the minimization of the number of physical disk accesses for a 

typical transaction load, described by a logical reference string (to include the access 

path) [Effe84].  
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There has been a great deal of research conducted on buffer management 

strategies. These include algorithms such as Clock, GClock, LRD, 2Q, and variants of 

LRU such as LRU-K. Clock and GClock simulate a LRU behavior. Least Recent Density 

(LRD), a derivative of GClock, calculates elapsed time references in order to keep pages 

more likely to be needed in the buffer. Frequency-based ensures pages that are used 

frequently are saved in memory. LRU-K selects a page for replacement based on time. 

The 2Q strategy improves the performance of LRU-K by using multiple queues [Feng98, 

Onei93]. LRU and Clock indicate a satisfactory overall behavior under a variety of 

conditions [Effe84]. The LRU model of replacement page access was very successful in 

increasing performance in a buffer manager or cache mechanism [Effe84, Maek87]. 

While many studies on database buffer management focused on various paging 

problems, more recent efforts have focused on finding buffer management policies that 

“understand” the database access patterns. Such algorithms include “New”, DBMIN, 

Working Set (WS), and Hot Set [Chou94]. It has been shown that transactions generally 

have a high degree of locality [Effe84]. That is, transactions often encompass commands 

that operate on data that is in close proximity. This permits the inclusion of transaction 

algorithms in buffering mechanisms.  

There have been many explorations into building a buffer management strategy 

that anticipates the behavior of the database system. The Weighing/Waiting Room (W2R) 

[Jeon98] is an example that prefetches the next block in the pointer chain (also called a 

one block ahead strategy) and partitions the buffer into two rooms – a weighing room that 
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maintains the currently requested pages and the waiting room that maintains a list of next 

pages in the prefetch. 

There has been a considerable effort to optimize the operation of the buffer pool. 

Early works concentrated on the selection of blocks to move into the buffer pool. 

Likewise, the selection of blocks to remove from the buffer pool has also been 

extensively explored. One such effort created an algorithm for the selection of blocks for 

the buffer pool called prefetching. 

The prefetching of data blocks into database system buffer pool is very similar to 

the prefetching of program execution statements in a virtual memory system. Simple 

sequential prefetching of pages has generally been found to be ineffective, but more 

sophisticated methods which either analyze the program in advance, accept user advice, 

or maintain relevant statistics during program execution can significantly improve system 

operation. Sequential prefetching of lines for cache memory has been shown to work very 

well because the amount of data arranged in sequence is large compared to the cache 

page (line) size; for most programs the amount of data arranged in sequence is not large 

compared to the main memory page size [Smit78]. 

Considered by many to be the most important property of reference strings, 

metadata that stores the access path, within page replacement algorithms is the locality of 

the reference behavior [Effe84]. Locality in this case is used for frequency counting of 

page hits and page faults. The goal is to watch for blocks that generate higher localities 
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(more frequently accessed) and store the frequency in the reference string

3

. This data is 

then used by the page replacement and retrieval algorithms to optimize the blocks in the 

buffer and thereby optimize access to frequently used data. If locality is observed in a 

reference string, most of the virtual memory allocation and replacement algorithms can 

be applied to buffer management; these algorithms were designed to keep the most 

recently referenced pages in main memory, since programs executing under virtual 

memory operating systems show high locality in their reference behavior [Effe84]. 

Research has shown that the operating system virtual memory algorithm and the 

database system buffer management algorithm are affected by each other, but it isn’t 

clear how to find a balance between the two and the performance is dependent on the 

types of each algorithm. Some pairs complement the behavior of the other and others 

limit the performance of the system as a whole [Kim88]. 

It has also been pointed out that in multitasking environments information from 

the query processor/optimizer may not be appropriate for performance enhancement 

[Jeon98]. Effelsberg and Haerder suggest database systems running in virtual memory 

operating systems should use a table search technique to reduce page faults [Effe84]. 

The ALV architecture is modeled after the architecture of PostgreSQL. Although 

PostgreSQL is an ORDB database system, the structure of the system is largely the 

reason for its success. Like PostgreSQL, ALV is divided into several modules that each 

provide an abstraction of the fundamental elements of a database system [Dong04]. The 

                                                

3

 Also called a working set by Denning and Randell in their work on modeling and controlling program 

behavior [Denn78, Rodr73]. 
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ALV buffer manager is a rudimentary implementation that does not take advantage of the 

access patterns. 

 

4.2.1.6 Shadow Paging  

One technique shown in the research that is unique enough to warrant special 

mention is the concept of shadow paging. With shadow paging, transaction logs do not 

hold the attributes being changed but a copy of the whole disk block holding the data 

being changed. This sounds expensive, but actually is highly efficient. When a 

transaction begins, any changes to disk follow the following procedure:  

 

1. If the disk block to be changed has been copied to the log already, jump to 3.  

2. Copy the disk block to the transaction log.  

3. Write the change to disk.  

 

On a commit the copy of the disk block in the log can be erased. On an abort all 

the blocks in the log are copied back to their old locations. As disk access is based on 

disk blocks, this process is fast and simple. Most database system systems use a 

transaction mechanism based on shadow paging [Elha84].  

Shadow paging is relatively uncomplicated to implement.  The most sophisticated 

portion of this technology is the log. Log entries can be implemented and stored in cache 

memory any time before query operation completes. This has an added benefit in that log 

pages (a block of log entries that fit into a block on disk) can be written to disk any time 
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before the transaction commits. Modified data blocks can be written to disk at any time 

provided a manual operation to dump, or checkpoint

4

, has not occurred. If a system fails 

before a checkpoint, the system can refer to the last known good checkpoint and recover 

data from that point

5

. This added benefit is perhaps the greatest advantage that shadow 

paging offers. 

However, there are also some negative aspects of shadow paging. Sequential 

processing such as a table scan can be detrimental and may lead to inefficiencies if the 

data is not stored in the same order as the file blocks on disk. In this case, the next data 

item may not be in the shadow cache and thus defeats the read-ahead algorithm. Since 

data is likely to exist in several places throughout the physical media, shadow paging 

may not be fetching the needed blocks from disk and may result in unnecessary transfers. 

On the other hand, if the data blocks are reasonably co-located, shadow paging will yield 

good performance. Various solutions to this dilemma have been considered [Trai82]. 

Unfortunately, shadow paging is not suitable for implementation in ALV. This is 

especially true considering the high degree of locality built into the concept of the 

versioning system. That is, all versions of all attributes for a given entity should be co-

located while permitting the iteration of all a set of attribute values for a given set of 

entities. However, the blocks that contain the attribute version data are not guaranteed to 

be stored sequentially. Thus, a paging algorithm that reads blocks ahead of the current 

                                                

4

 Called a ‘checkpoint’ becau se it forces the system to check that no pages are left unwritten. It provides a 

stable state for the application of recovery algorithms.  

5

 The responsibility for ensuring good checkpoint logs is the responsibility of the database professional.  
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block is not guaranteed to have the next block in the set of blocks containing the attribute 

version data in cache. This clearly defeats the advantages of shadow paging. 

 

4.2.1.7 Sparse Files 

Windows NT, and derivatives, support a file concept called ‘sparse files’ [Silb98]. 

Sparse files permit the allocation of unused blocks so that the file consumes only as much 

space as it actually has data. The addressing mechanism is retained and for all 

appearances the file contains all of the space allocated, but what is actually stored are 

only the blocks that contain data [VanB03]. This technique can be confused with a 

concept called sparse file allocation. Research of physical database file implementation 

and buffer management strategies defines sparse file allocation as the intentional storage 

of empty blocks to increase the efficiency of file I/O. References to sparse files and/or 

sparse techniques refers to what is supported by research

6

 and has nothing to do with 

sparse files as supported by the host operating system. 

 

4.2.1.8 Transposed Files  

An early attempt to minimize physical storage access time using file storage used 

a method called a transposed file. A transposed file is a collection of subfiles that are not 

ordered or necessarily co-located. The data being stored is divided among the subfiles 

based on a partitioning scheme for the attribute data. That is, each file contains only a 

subset of all of the attributes in the data. Thus, the data for a single entity is distributed 

                                                

6

 Yet another example of how industry strays from academic rigor.  
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among the files. Transposed files were designed to reduce unnecessary attribute (data) 

transfer during queries. This is analogous to the use of secondary indices of inverted files 

where the objective is to reduce unnecessary record transfers [Bato79].  

The disadvantage comes when a projection is performed on the data that requires 

access to all of the subfiles in order to satisfy the query. The concept of transposed files 

resembles that of the horizontal implementation described in section 4.2.2.1 below. 

Transposed files, much like scatter storage techniques [Morr68], separate the data into 

compartments that can be searched much more quickly than a single file. 

 

4.2.2 Version Store Implementations 

There are many techniques that are available to create a storage mechanism for 

versioned data. These techniques range from utilizing common practices for database 

logical design (schema) to implementing an object-relational database. Two of the more 

common techniques are examined in the following paragraphs. 

The primary users of the ALV system are interested in research. As they conduct 

their research, more and more data is accumulated [Isaa93]. The application of data 

deconfliction techniques described earlier in section 1.1 permits the identification and 

resolution of collisions within the data which generates versions of the data. This constant 

addition of versioned data means the system must be optimized for storing large amounts 

of attribute versions in groups that are accessible quickly. The file system therefore must 

be optimized to retrieve these sets of attribute versions. In this strategy, time complexity 
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is traded for space complexity by maintaining an index whose growth is asymptotically 

super-polynomial. The argument is that space is cheaper than time [Isaa93, Kuma03]. 

Versioned data requires a dedicated storage mechanism that optimizes retrieval of 

sets of versioned data. This is preferable to and more efficient than using traditional 

storage mechanisms to store versioned data. 

One of the early ideas for the ALV physical implementation was to utilize the 

facilities of the database system and create a binary large object (BLOB) field for storing 

the version data. Unfortunately, there are several major flaws in that concept. First, 

BLOBs are notoriously slow and are often the cause of performance issues [Widm99]. 

Second, BLOBs are generally not indexed nor can they be indexed using any normal 

mechanism. Lastly and most importantly, using a BLOB as a multi-valued field violates 

several normal forms of relational theory. 

 

4.2.2.1 Horizontal 

The first choice among database professionals when faced with the requirement to 

store versioned data is to create a logical design that includes tables that stores the 

versioned data in separate tables (see figure 4-1). The horizontal name comes from the 

fact that the data is horizontally partitioned. 
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Figure 4-1: Simplified Horizontal Database Example 

 

 

In this simple example, the base table ‘Base’ is defined to have a single primary 

key and four attributes. Three of the four attributes will require the storage of versioned 

data. Furthermore, the versioned data will have differing sets of metadata. Each version 

store is implemented as a separate table for each set of versioned data. Notice the need 

for an identity field (see section 4.1.1.4 below) in the versioned tables in order to 

overcome the limitation of uniqueness imparted by the relational database. This is 

necessary because there may exist several values of an attribute for each reference to the 

base table. Furthermore, there may exist more than one attribute version for a single 

reference to the base table that differs only in the values of the metadata – same value, 

but different ‘pedigree’. This could have been overcome by adding the metadata fields to 

the primary key, but would result in a very complex and large index file for each table.  

Although simplified, one can easily see that in order to retrieve all of the attribute 

versions for a given entry in the base table, one would require a number of simple queries 

to assemble the data. However, note the overlap of the metadata fields. The fields differ 

and therefore will require additional query commands to form a single result, e.g., 
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UNION, JOIN, etc. Figure 4-2 contains an example SQL statement that retrieves all of 

the attribute versions for a specific entry in the base table. The results would be displayed 

as a single result set. 

 

SELECT Base.PKey, Base.Field_A, Base.Field_B, 

B_Versions.B_Values, Base.Field_C, C_Versions.C_Values, 

Base.Field_D, D_Versions.D_Values, B_Versions.MetaField_E, 

B_Versions.MetaField_F, B_Versions.MetaField_G, 

D_Versions.MetaField_J, D_Versions.MetaField_K, 

C_Versions.MetaField_H 

FROM ((Base INNER JOIN B_Versions ON Base.PKey = B_Versions.PKey) 

INNER JOIN C_Versions ON Base.PKey = C_Versions.PKey) INNER JOIN 

D_Versions ON Base.PKey = D_Versions.PKey 

WHERE (((Base.PKey)=12345)); 

Figure 4-2: Horizontal SQL Statement 

 

 

Clearly, the above SQL statement isn’t easy to read and may in fact be difficult to 

create and modify to retrieve any meaningful relationships among the metadata fields 

and/or the attribute versions themselves. 

The major limitations of the horizontal technique are the proliferation of 

versioned tables and the complex relationships necessary to complete the relational ties 

that give a database expressive power. Despite these limitations, the horizontal technique 

is the most common and the most popular method of storing versioned data. It is most 

intuitive to database professionals because it follows the common practice for data 

normalization. Unfortunately, it also complicates the logical design in ways most 

database professionals don’t immediately recognize. What is needed is a storage 

mechanism that will permit simplified queries that implement the relational pathways 

between the base table and the attribute versions thereby optimizing the retrieval of all 

attribute versions for a given entry in the base table. 
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4.2.2.2 Vertical 

A less obvious choice is the creation of a logical design that stores information 

about classes of data. This technique permits the categorization of data and permits a 

more flexible versioning mechanism for data. This technique is most often used to 

implement an object-relational database in a purely relational database system. This 

practice gives the flexibility to include a concept of versioning, which is inherent in 

object-oriented design, while maintaining the integrity power of a relational database. A 

simplified example of a vertical implementation is shown in Figure 4-3. The name 

vertical comes from the fact that the data is partitioned into classes of attributes and then 

enumerations, etc. continuing to be de-referenced down to the value for that instance of 

the attribute version. 

 

 

Figure 4-3: Simplified Vertical Database Example 
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SELECT Base.PKey, Attribute_to_Enum.Attribute_Name, 

Attribute_Values.Value, Metadata.Metadata_Name, 

Metadata.Metadata_Value 

FROM Metadata INNER JOIN (Base INNER JOIN ((Base_to_Attribute 

INNER JOIN (Attribute_Values INNER JOIN Attribute_to_Enum ON 

Attribute_Values.Value_Id = Attribute_to_Enum.Value_Id) ON 

Base_to_Attribute.Attribute_Id = Attribute_to_Enum.Attribute_Id) 

INNER JOIN Attribute_to_Metadata ON 

Base_to_Attribute.Attribute_Id = 

Attribute_to_Metadata.Attribute_Id) ON (Base.Field_B_Id = 

Base_to_Attribute.Attribute_Id) AND (Base.PKey = 

Base_to_Attribute.PKey)) ON Metadata.MetaData_Id = 

Attribute_to_Metadata.Metadata_Field_Id 

WHERE (((Base.PKey)=12345)); 

Figure 4-4: Vertical SQL Statement 

 

 

Figure 4.4 shows an SQL statement that retrieves all of the metadata and attribute 

version values for a given entry in the base table for one versioned attribute – field B. The 

user would have to issue a similar query to retrieve all of the attribute versions for fields 

C and D as well as a slightly simpler query to retrieve the attribute values for field A. 

Notice that this implementation does not prohibit any field from being versioned. In fact, 

the implementation has the advantage that all fields are eligible for versioning. 

It is interesting to note the complex inner joins necessary to follow the path of 

class hierarchies to retrieve the value for the attributes. Although simple in comparison to 

actual implementations, this clearly shows the complexity introduced in order to achieve 

a versioning mechanism in an object-relational database. 

There are other ways to form this query that would avoid the complexities of the 

inner joins, but they introduce nested select statements. Nested selects are more difficult 

for the query processor to evaluate and execute and thus usually results in longer query 

execution times.  
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Another problem with using the vertical approach to storing versioning 

information is the expansion of tables and the many-to-many relationships that often 

develop during schema design. There are many techniques to overcome this problem. 

One technique is to use a supertype/subtype hierarchy and replace the many-to-many tie 

tables with class lookup tables. This drastically reduces the query processing time, but 

results in a less than ideal data relationship among the versioned data [Bane03]. 

 

4.2.2.3 Are There Alternative Implementations for a Version Store? 

In the realm of possibility, there is always another way. In the case of the 

clustered version store, there was at least one alternative other than the strategies 

described above that could have provided a possible solution. The MySQL server 

provides the database professional with the ability to choose from a set of possible 

storage engines

7

 (table types). These subsystems are responsible for the storage and 

retrieval of all data stored. Like the various file systems available for operating system, 

each has its own benefits and drawbacks. Fortunately, many of the differences are 

transparent at the query layer. 

This flexibility allows database professionals to tailor the physical storage of each 

table to the mechanism that best fits the use of the table. It is even possible to mix and 

match tables of different types in the same database. MySQL has six distinct table types 

[Horn03, Vasw04, Zawo04]:  

 

                                                

7

 MySQL refers to these as “table types” – a somewhat misused term, but one that we shall use to remain 

consistent with the MySQL literature and nomenclature.  
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 ISAM  

 MyISAM 

 InnoDB  

 BerkeleyDB (BDB)  

 MERGE  

 HEAP  

 

ISAM tables are basic implementations of the indexed sequential access method 

(ISAM). While storing data sequentially, ISAM provides direct access to specific records 

through an index. This combination results in quick data access regardless of whether 

records are being accessed sequentially or randomly. 

MyISAM tables are an extension of the ISAM table type built with additional 

optimizations such as advanced caching and indexing mechanisms. These tables are built 

using compression features and index optimizations for speed. InnoDB is a third-party 

storage engine licensed from Innobase (www.innodb.com) distributed under the GNU 

Public License (GPL) agreement. All indexes in InnoDB are B-trees where the index 

records are stored in the leaf pages of the tree. The default size of an index page is 16KB. 

BDB is a third-party storage engine licensed from SleepyCat (www.sleepycat.com). 

Berkeley DB supports hash tables, Btrees, simple record-number-based storage, and 

persistent queues. 

MERGE tables are built using a set of MyISAM tables with the same relvar that 

can be referenced as a single table. Data is accessed using singular operations or 
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statements such as SELECT, UPDATE, INSERT, DELETE. Fortunately, when a DROP 

is issued on a MERGE table, only the MERGE specification is removed. The original 

tables are not altered. The biggest benefit of this table type is speed. It is possible to split 

a large table into several smaller tables on different disks, combine them using a MERGE 

table specification and access them simultaneously. Searches and sorts will execute more 

quickly since there is less data in each table to manipulate. For example, if you divide the 

data by a category, you can search only those specific portions that contain the category 

you are searching for. Similarly, repairs on tables are more efficient because it is faster 

and easier to repair several smaller individual files than a single large table. Presumably, 

most errors will be localized to an area within one or two of the files and thus will not 

require rebuilding and repair of the entire data. Unfortunately, this configuration has 

several disadvantages; 1) One can use identical MyISAM tables to form a single MERGE 

table, 2) the REPLACE operation is not permitted, and 3) indexed access can be less 

efficient than for a single table

8

. 

HEAP tables are in-memory tables that use a hashing mechanism for indexing. 

Thus, these tables are much faster than those that are stored and referenced from disk. 

They are accessed in the same manner as the other table types, however the data is stored 

in-memory and is valid only during the MySQL session. The data is flushed and deleted 

on shutdown (or a crash). HEAP tables are typically used in situations where static data is 

accessed frequently and rarely ever altered. Examples of such situations include zip code, 

                                                

8

 With several tables there exists an ind ex tree for each thus for each file searched a separate index must be 

tranversed. 
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state, county, category, etc. and other look up tables. HEAP tables can also be used in 

databases that utilize snapshot techniques for distributed or historical data access. 

Some of the table types offered in MySQL support concurrency. The default table 

type for MySQL is MyISAM. It supports table-level locking for concurrency control. 

That is, when an update is in progress no other processes can access any data from the 

same table until the operation is completed. The MyISAM table type is also the fastest of 

the available types due to optimizations made on the ISAM table principles. The BDB 

tables support page-level locking for concurrency control. That is, when an update is in 

progress, no other processes can access any data from the same page as that of the data 

being modified until the operation is complete. The InnoDB tables support row-level 

locking for concurrency control. That is, when an update is in progress no other processes 

can access that row in the table until the operation is complete. Thus, the InnoDB table 

type provides an advantage for use in situations where many concurrent updates are 

expected. However, any of these table types will perform well in read-only environments 

such as web servers or kiosk applications. 

Concurrency operations like those discussed above are implemented in database 

systems using specialized commands that form a transaction subsystem. Currently, only 

two of the table types listed support transactions – BDB and InnoDB. Transactions 

provide a mechanism that permits a set of operations to execute as a single atomic 

operation. For example, if a database was built for a banking institution the macro 

operations of transferring money from one account to another would preferably be 

executed completely (money removed from one account and placed in another) without 
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interruption. Transactions permit these operations to be encased in an atomic operation 

that will back out any changes should an error occur before all operations are complete, 

thus avoiding data being removed from one table and never making it to the next table. A 

sample set of operations in the form of SQL statements encased in transactional 

commands is shown in Figure 4-5.  

 

 

START TRANSACTION; 

UPDATE SavingsAccount SET Balance = Balance – 100 

WHERE AccountNum = 123; 

UPDATE CheckingAccount SET Balance = Balance + 100 

WHERE AccountNum = 345; 

COMMIT; 

Figure 4-5: Sample Transaction SQL Statements 

 

 

In practice, most database professionals specify the MyISAM table type if they 

require faster access and InnoDB if they need transaction support. Fortunately, MySQL 

provides facilities to specify a table type for each table in a database. In fact, tables within 

a database do not have to be the same type. This variety of table types permits the tuning 

of databases for a wide range of applications [Vasw04]. 

Interestingly, it is possible to extend this list of table types by writing your own 

table handler. MySQL provides examples and code stubs to make this feature very 

accessible to the system developer. By being able to extend this list of table types, it is 

possible to add support to MySQL for complex, proprietary data formats and access 

layers. 

The main reason this approach was not taken was the need to keep the clustered 

version store as separate from the MySQL implementation as possible, to reduce risk to 
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the MySQL core functionality and to interface better with the specialized query optimizer 

and query execution engine that was developed to exploit the clustered version store. 

From a technical implementation standpoint, this option is not feasible due to the 

uniqueness of the result sets returned from queries on the clustered version store. 

 

4.2.2.4 The Use of Superkeys 

A technique which has been used in both horizontal and vertical implementations 

is the application of superkeys to data to overcome the uniqueness constraint. A superkey 

is a special attribute designed to guarantee uniqueness within the table. Superkeys 

therefore permit an artificial uniqueness characteristic for the rows in a table. 

Unfortunately, superkeys are seen by many, including the author, as a means to obscure 

and violate first normal form. Indeed, the use of superkeys disassociates the meaning and 

significance of uniqueness that is required for relational systems. In many ways, the 

application of superkeys has become a “cheap” way to implement complex access 

mechanisms. For these reasons, the application of superkeys has been expressly avoided 

in this work. 

 

4.2.3 Clustered File Organization 

Most database systems store relational data in separate files and utilize the 

operating system file subsystem for access. Some database systems organize the files by 

database, others organize the files by table. Data is then added at the end of the file or 

placed in empty spaces left from deletions. Thus the data can become fragmented 
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resulting in data that is normally accessed together

9

 being scattered within the file. 

Although this mechanism is efficient for smaller data sizes, it becomes much less 

efficient for larger data sizes. Queries for this data result in many accesses made to the 

file subsystem, perhaps even one page of data read for every data item. One way to 

overcome this limitation is to group associated data together in the same place in the file. 

One could then chain the data together and access the data using a minimal number of file 

subsystem reads. This type of file organization is called clustering [Rama03, Silb96]. 

There are several standard methods for storing blocks of a file on disk. 

Contiguous allocation specifies that the blocks are located in a consecutive block chain. 

This enables fast retrieval of the file during a file scan using a very fast double buffering 

mechanism, but it makes expanding the data difficult – new blocks must be inserted in 

the block chain and may require reorganization of the file for optimal performance. 

Linked allocation is a physical mapping of a linked list where each block contains a 

pointer to the next block (in some implementations the previous block as well). This 

method overcomes the problems of inserting blocks, but does not optimize scanning the 

entire file since there is no guarantee that the blocks are in close proximity on disk. A 

combination of these techniques that allocates data in groups of consecutive blocks is 

called clusters. The clusters are then linked thereby achieving a compromise of the 

benefits (and detriments) of both techniques. The linking of the clusters is referred to as 

establishing extents of the previous cluster. Extents therefore permit the expansion of 

                                                

9

 Some examples include addresses, family names, master/detail associations, etc.  
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files in an orderly and predictable manner that agrees with the basic principles of good 

file organization [Elma03]. 

Disk clustering

10

 attempts to store all the data which a query would want has been 

stored close together on the disk. In this way when a query is executed the database 

system can simply "scoop" up a few tracks from the disk and have all the data it needs to 

complete the query. Without clustering, it may be necessary to move over the whole disk 

surface looking for bits of the query data, and this could be hundreds of times slower than 

being able to get it all at once. Most database system systems perform clustering 

techniques, either user-directed or automatically.  

Clustering is a concept based on the premise of storing data that is logically 

related (and thus frequently used together) in groups on disk that can be retrieved as a 

unit. This physical proximity approach is a very important tool in file organization 

(physical media layout) [Date04a].  

Clustering can be implemented in database systems using intra- and inter-file

11

 

techniques by storing related data items in the same block (page) whenever possible and 

otherwise on consecutive, adjacent blocks. Thus the database system must be capable of 

managing the file organization. It also must not interfere with the normal operation of the 

file system of the host operating system. This database subsystem is often referred to as 

                                                

10

 Also called aggregation by March [Marc83].  

11

 Inter-file clustering techniques include tran sposed files and other hierarchical storage techniques. This 

chapter concentrates on intra -file techniques.  
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the file manager. When a new data item is created, the file manager must store the data 

nearby in the same block or in one of the adjacent or consecutive blocks

12

 [Date04a]. 

The most desirable technique is one which allows blocks to be stored physically 

adjacent or contiguously, allowing an entire collection of data to be read when sequential 

access is desired. This naturally leads database system implementers to prefer an extent 

based file system (e.g., VSAM) that allocates blocks of related data. However, such files 

must grow by adding an extent at a time rather than a block at a time [Ston81]. Clustering 

is most effective when the greatest amount of related data can be fetched by a single 

physical media I/O operation [Cham81a]. 

 

Although clustering data (tuples) that have a high degree of commonality is 

beneficial, one should not cluster data (tuples) that have little or no commonality. The 

reasons are implementation-dependent but generally. 

 

a) Small page sizes typically result in near or adjacent placement on disk thus 

clustering would have little or no effect. This is especially true in the UNIX 

environment. Stonebraker stated in his paper concerning the design of INGRES 

that the concept of adjacent pages in a virtual memory system such as Unix does 

not imply that the data is physically adjacent [Ston76]  

                                                

12

 Consecutive in this case indicates the next or previous block in the file access chain. It is often 

impossible to specify a physical address as mo st operating systems have their own file subsystem that 

manages disk space allocation.  
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b) Access methods are more complicated if clustering is supported. The clustering of 

tuples only makes sense if associated tuples can be linked together as sets of 

related data, sets of links, or some other scheme for identifying clusters. 

Incorporating these access paths into the decomposition scheme would greatly 

increase its complexity.  

 

It should be noted that the designers of System R have reached a different 

conclusion concerning clustering [Ston76]. 

 

4.3 Clustered Version Store 

Database systems have very specific physical storage mechanisms that are 

optimized for relational data storage and retrieval. It is therefore incorrect to assume that 

the concept of attribute-level versioning could be implemented using conventional 

techniques. The versioned data does indeed resemble that of a table, but it is more 

accurate to describe the version data as a collection of sets where each set has its own 

logical format. Thus, the concept of a relational table store is inadequate to store the 

versioned data. What is needed is a storage mechanism that can efficiently store and 

retrieve version information. This information is not very useful without its parent data 

(the original data item that is versioned). It is therefore important to make a direct 

association between the parent data and its versions. This concept is exactly what the 

clustered version store is designed to do [Elma03]. 
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The goals of ALV include optimizing the retrieval of version information of an 

entity and the storage of meaningful metadata. These goals are the driving factor for the 

research presented here. Why store metadata? Metadata provides the ability to track the 

origin or pedigree of an attribute version. Some possible metadata to consider include 

source of information, date, time, qualifier data, etc. Associating this metadata and 

storing it with the attribute version provides the ability to perform analysis on the 

versioned data. For example, it would be possible to categorize the data based on a 

metadata field that stored reliability information. 

The clustered version store attempts to solve all of the problems by providing 

inherent relational operations, that remove the burden of logical design complications, 

without modification to the base structures and by providing a optimized query 

mechanism.  

The goals of the clustered version store are shown below: 

 Store sets of attribute versions in contiguous blocks of data for fast retrieval. 

 Permit attribute versions to contain disjoint sets of metadata.  

 Utilize the operating system for file-level I/O. 

 Retain relationships to the base table without requiring changes to the base 

table structure. 

 Utilize chaining techniques to reduce complex reference mechanisms. 

 

This section presents the inner workings of the clustered version store (CVS). An 

examination of the implementation design and techniques are presented along with a 
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detailed explanation of the file layout and operation of the binary file representation of 

the clustered version store. 

 

4.3.1 Technology Descriptions 

The clustered version store is implemented as classes within a C++ program. All 

aspects of the operation of the clustered version store are abstracted and represented as 

classes. Starting from the individual data items, an attribute is a class that contains values, 

a tuple is a class that contains attributes, and finally a relation is a class that contains 

tuples. In a similar way, the physical representation of data is also represented as a set of 

classes and helper classes. The lowest level of the system is the data file, which manages 

data in blocks, followed by the record file which manages data at the attribute-version

13

 

level. Additional helper classes are a queue class for managing block lists and a hash 

table class for managing lookup lists for the attribute versions and metadata during read 

and write operations. For more information about these classes, see Appendix B. 

 

4.3.1.1 Physical Design Goals 

The physical design need not be optimal in order to perform and scale well 

[Bato82]. In a related corollary, it is also considered that underloading,  the intentional 

use of extra storage

14

 for use in adding new or modifying data, can have such long-term 

benefits as reducing the time between maintenance operations and degradation of access 

                                                

13

 Since an attribute version is the attribute value that is versioned along with all of its associated metadata, 

one can easily associate this as a ‘tuple’ and thus the record file is operating the same way a traditional 

record-level manager for a traditional database system implementation [Cham81a].  

14

 The over zealous application of these “white spaces” can lead to the opposite effect – too much irrelevant 

data becomes a burden on the system. 
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path execution. The primary concern of the database designer is to minimize the cost of 

data access. This is especially important when one considers that accessing data on 

physical media is several orders of magnitude slower than accessing the same data from 

memory [Seve77]. 

Another area where a considerable amount of research has been conducted is the 

concept of blocking factor – simply the number of tuples stored in a single page (block). 

The proper balance of blocking factor and underloading can achieve a more stable access 

path execution for longer periods of time [Yao77]. 

If a block is full, a new block is allocated and the existing block extended. The 

block extents are managed using a blocking chain similar to the attribute chains 

[Date04a]. Figure 4-6 illustrates how this is accomplished using two links – one that 

points to the block that the current block extends (the backward pointer named extends) 

and another that points to the next block in the extent (the forward pointer named 

extended by). Each block has a data element that permits the system to determine if there 

are more extents by examining the extends data item thus moving “forward” in the chain. 

Similarly, the system can determine if the current block is an extension of another block 

thus moving “backward” in the chain. 

 

 

Figure 4-6: Extents Addressing 
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4.3.1.2 Attribute Chains 

The file blocks store attribute versions using pointer chains [Date04a]. Pointer 

chains permit fast access to related data without having to search a block. Pointer chains 

also permit efficient internal storage within the internal representation of the data. That is, 

pointer chains are simply linked lists and thus all the advantages of linked lists can be had 

without having to build them from the raw data. In fact, it is matter of address mapping to 

reference the pointer chains directly from the data buffer (cache). The principal 

advantage of using pointer chains is it enhances not only retrieval but also insertion and 

deletion. Since pointer chains chain together the attribute versions, they are called 

attribute chains.  

 

 

Figure 4-7: Attribute Chains 

 

 

Figure 4-7 and figure 4-8 depict the logical layout of a hypothetical data file 

containing three attribute chains that store version data for three attributes and the actual 

logical mapping of the physical data store. The drawing depicts two blocks of an ALV 

file. The two blocks shown illustrate how the block extents are implemented. Note in 

block 3 that the next block is block 4 and in block 4 the previous block is block 3. The 
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drawing also illustrates how the block offsets are used to continue attribute chains across 

a set of blocks. For example, the attribute chain that begins in block 3 is extended to 

block 4. To maintain backwards linking, the attribute chain that is continued in block 4 

points to the previous link the attribute chain in block 3.  

Block

� Number: 3

� Next: 4

� Previous: 0

Record

� Size: X bytes

� Empty : No

Attribute

� Column Id: 1

� Next Attribute: Block 4, Offset Y

� Previous Attribute: Block 0, Offset 0

Attribute Data

� Metadata Id: 1

� Data Size: 8 bytes

� Data Value: “Bubba”

Attribute Data

� Metadata Id: 2

� Data Size: 8 bytes

� Data Value: “Weight”

Attribute Data

� Metadata Id: 3

� Data Value: 295

Attribute Data

� Metadata Id: 4

� Data Size: 8 bytes

� Data Value: “Jan2003”

End of Attribute Data

� Metadata Id: Reserved Value

Block

� Number: 4

� Next: 0

� Previous: 3

Record

� Size: X bytes

� Empty : No

Attribute

� Column Id : 1

� Next Attribute: Block 0, Offset 0

� Previous Attribute : Block 3, Offset Y

Attribute Data

� Metadata Id: 1

� Data Size: 8 bytes

� Data Value: “Bubba”

Attribute Data

� Metadata Id: 2

� Data Size: 8 bytes

� Data Value: “Weight”

Attribute Data

� Metadata Id: 3

� Data Value: 250

Attribute Data

� Metadata Id: 4

� Data Size: 8 bytes

� Data Value: “Feb2004”

End of Attribute Data

� Metadata Id: Reserved Value

Record

�

Size: Z bytes

� Empty : Yes

Record

�

Size: Z bytes

� Empty : Yes

X

 

Figure 4-8: Attribute Chain Layout with Block Headers 

 

 

Since the attribute chains require only a blocknum:offset mechanism to locate the 

next attribute version in the attribute chain, it is possible to reclaim unused space from 

delete operations to store attribute versions in order. It should be noted at this point that 

the ordering of the attribute versions is arbitrary and does not have bearing on the order 
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of the data itself

15

. This technique is similar in many ways to the implementation of 

INGRES [Ston76]. 

In this case, the header contains the starting pointer references (roots) of all of the 

attribute chains. The header is repeated for each starting block of the version data for a 

given base table entry. Thus, it is possible to determine which entities have version data 

for a given attribute.  

Conventional physical layout of pages have tuples placed entirely on a single page 

and no tuple may span more than one page [Ston76]. In much the same way, attribute 

versions are required to be placed on a single page and are not permitted to span multiple 

pages. However, attribute version chains may span more than a single page using the 

extension technique described above. 

 

4.3.1.3 Secondary Representation 

The primary storage media isn’t the only layout that must designed. It is also 

important to consider the layout and representation of data in memory. The reasoning 

follows the same argument as that of physical media – one must consider the many ways 

that the data will be used and thus one must design to maximize the most important 

requirements levied. This secondary or internal representation must be capable of two 

important tasks. First, the storage mechanism must permit the logical traversal of the 

data, i.e. the ability to find the next item in the collection. Second, additional control data 

                                                

15

 Although it could if one wanted to ensure ordering of the attribute versions. This is possible and perhaps 

even worthy of exploration as it would not require the relocation of any data to achieve.  
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must be minimized and all irrelevant control data eliminated [Marc83]. Data in the ALV 

system is represented in two ways: 

 

1. Data that is cached in the buffer is stored in the same format as that on the 

physical store with a few additional pieces of reference data attached and the 

remapping of the access chains to memory pointers. The greatest advantage of 

using this technique is that the data need not be transformed when read from disk 

and placed in the buffer. Additionally, the mapping of access chains to memory 

pointers simplifies the data traversal implementations.  

2. The internal representation of a tuple is encapsulated in a tuple class that provides 

all of the necessary operations and structures to represent a tuple in memory. The 

greatest advantage gained by using this technique is that the query processor can 

access and manipulate the tuple in ways that are intuitive to the implementer – the 

data “acts” like a tuple should. 

 

4.3.2 Execution Sequence 

The execution of the ALV system follows the same model as that of MySQL. 

That is, it is a multithreaded server application where each command is given its own 

thread of execution. Once the thread is created, control is passed to the parser where the 

SQL statements are parsed and directed to the appropriate execution method. A very 

large case statement is used to contain all of the possible execution methods for all of the 

available commands.  
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In order to integrate tightly with the MySQL system, the parser was modified to 

include catches for special ALV keywords. The location and type of keyword identified 

will cause the MySQL system to redirect commands to the ALV system for processing. 

For a complete explanation of this technique, including the execution sequence from the 

parser to the ALV system and its implementation, see Chapter 6. For a more in-depth 

study of how the MySQL code was modified, see Appendix B. 

What is of interest for this discussion is the execution sequence during physical 

store access and the translation of that data to internal representation and out to the caller. 

Figure 4-9 gives a UML sequence diagram depicting this process from the point of entry 

to the ALV execution manager (named ALV_Manager). 

Once a fetch is issued to a particular physical store, control is passed to a class 

called a Relation that encapsulates the concept of a versioned data store, which is very 

similar to that of a relation in relational theory. The Relation class then calls the 

ALVRecordFile class (implemented in the source code as ALVRecordFile) that 

encapsulates the physical store and includes a dedicated buffer manager. Depending on 

whether the datum is in the buffer, the ALVRecordFile will either retrieve the attributes 

for the tuple from the buffer using a hash for accessing attribute version metadata or load 

the page from disk, and then build a queue for storing the attribute information. The use 

of a hash permits the storage of attribute version chains that have different sets of 

metadata attributes. The hash table stores the lists of attribute chains indexed (hashed) by 

the definition of the attribute chain definition. Thus, the clustered version store can store 
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sets of attributes that do not share the same set of metadata

16

. Once the attribute structures 

are created, the Relation class will use the Tuple class to create a tuple in memory and 

return that to the relation class for storage in its internal memory cache. Execution would 

then return to the ALV execution manager and then on to the query execution engine, 

which evaluates and finally returns the tuple to the caller (provided it meets the criteria of 

the command). 

 

Loop

Loop

Loop

Relation RecordFile

Fetch()

Fetch

FindAttribute

HashTable

PutKeyValue

Queue

AddHashTable

Return Queue

Tuple

CreateTupleFromHash

AddTupleToList

 

Figure 4-9: ALV Execution Sequence 

 

                                                

16

 This is perhaps the most unique aspect of the clustered version store. No other relational database system 

can accomplish this.  
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4.3.3 Class Descriptions 

The ALVDataFile is a set of C++ classes (see Appendix B) designed to manage 

the myTable.alv file (a disk file that stores the versioned attributes). It stores data in 

extensible blocks (block size is adjustable) and provides access to header information 

(header size is adjustable), free space, and statistical information about the data file. It 

also supports clustered block access for use in buffer management algorithms. The 

implementation of block extents (described above) is similar to those implemented in 

POSTGRES system [Ston94]. 

The class is designed to read whole blocks or clusters of blocks to/from the data 

file. Functions available to the caller include the ability to retrieve, update, and insert a 

random block by block id, a range of blocks, a cluster by starting block id (the entire 

cluster is returned in sequential order regardless of the order of those blocks on disk), and 

a range of clusters. The implementation of these functions follows the standard common 

practices for file I/O and data structure manipulation [Ston76]. 

The ALVDataFile is designed to manage records containing versioned attribute 

data and metadata within blocks managed by bptBlockMgr. Each block is mapped to a 

single record in a single standard MySQL table. The records within a block contain only 

versioned attribute values and metadata for that single record. The records are chained 

together in a singly linked list, where each record is empty or contains attribute values. 

Records know their size since they may be slightly larger than needed for the attribute 

data. Figure 4-10 depicts these classes and how they fit with the other major ALV 

classes. A complete description of the MySQL integration is shown in Appendix B. 
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Versions of an attribute are chained together in a doubly linked list. Attributes 

contain one attribute version value plus the primary key from the source row, the name of 

the column from the source row for this version, and any additional metadata values. 

Each attribute has a column id that is used in find operations. 

 

 

 

Figure 4-10: Major ALV C++ Classes 

 

 

Records are allocated to exactly the size needed for the attribute data, except 

when too few bytes to form a new record would remain. Attribute values are never 

updated in place. Updates are always performed by deleting the old record and inserting a 

new record. This is necessary to ensure the attribute chains do not become too convoluted 
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and remain in a general progression across the blocks. Over time, the allocation of 

records within a block may cause some fragmenting, but records are compacted every 

time one is deleted, so fragmentation should be minimized. 

Attributes are always inserted into the attribute list in sequential order. This is 

important because it allows blocks to be locked going forward through the block list, 

preventing deadlocks from occurring. The only exception to locking blocks going 

forward is when an attribute is deleted. If the previous attribute is in a prior block, an 

attempt is made to lock the prior block. If it fails, the currently locked block is released to 

prevent deadlock. This process repeats until both blocks are locked. 

If a new record is needed but cannot be allocated within the block, the block will 

be extended and the record allocated in the new block. 

All attribute addresses are NOT implemented as standard pointers, since that 

would fix the memory location. Each pointer within the linked list is stored as 2 separate 

pieces of data: the block number and offset within that block. This makes the record 

independent of its memory location, which is crucial to allowing the blocks to be written 

to/read from a file.  

 

4.3.4 The ALV Buffer Manager 

The ALV Buffer Manager is a cache mechanism responsible for caching pages 

(blocks) of data stored on the physical media. It wrappers the physical access layer 

utilizing the interface to the physical access layer and translates the data from its physical 

form directly to an internal memory buffer adding only a small portion of control data to 



www.manaraa.com

Bell 2005 – Attribute-Level Versioning: A Relational Mechanism fo r Version Storage and Retrieval   139  

 

each page. The primary benefit of the buffer manager is to provide concurrency control in 

the form of page-level reader-writer locking with writer priority and batch save/discard 

changes capability. 

One buffer manager is associated with each physical store on disk. Each instance 

of the buffer manager maintains its own memory pool. This is necessary in order to avoid 

synchronization problems with sharing data from the internal memory pool with other 

elements of the system. 

The control data associated with each page includes mappings from the physical 

page extent mechanism to memory pointers. This is accomplished by converting the 

linked list of extents on disk to a linked list in memory. Also included in the control data 

is the state of each page. The status contains the lock state used to support concurrency 

with states of “in-use” and “free” (deleted).  

 

4.3.4.1 Integration with Physical Data Store 

The buffer manager utilizes features of the physical data store in order to ensure a 

more successful integration. The file header (a reserved space at the front of the data 

store) contains a fixed amount of information from the buffer in the form of the block 

header data structure shown in Figure 4-11. The physical data store also provides 

mechanisms for external code (higher levels in the system) to specify that a fixed number 

of words of the file header be reserved for its own use as well. 

Figures 4-12 and 4-13 depict an overview of the layout of the headers in the 

physical data store. The drawings show an example of the binary file layout (Figure 4-
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12). In the example, the location of the file header is shown in relation to the blocks of 

data. Note that block 1 is used as an additional header for storing the metadata list for the 

attribute versions store in the file. The specifics of the headers for both the data file and 

the index file are shown in Figure 4-13. Note in the drawing that the data structures for 

the index are the data structures used in the B-Tree implementation of the index. 
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Figure 4-11: ALV Data Structures 
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Figure 4-12: ALV Binary Data File Format 
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Figure 4-13: The ALV Physical Data Store Header and Block Diagram  

 

 

The remaining space in the file header is used for recording the queue of free 

block numbers (one word per block) when the file is closed. The size of the free block 

queue is defined by the amount of space that will be available. It is important that the 

queue size be large enough to prevent frequent sequential scans through the file to rebuild 

it. Because the free block queue is stored in an area with a fixed size, it is possible for the 

free block queue to overflow. In this case, the free block queue records a counter of all of 

the insertions into the queue that exceed its capacity. Should the free block queue be 

exhausted at a later time, an algorithm is run on the first request for a free block. 

Although this algorithm requires walking the entire file, the cost is minimal compared to 

a manual (offline) reorganization. In this way, the physical data store can repair its free 

block queue when needed without requiring down time. 

In addition to the file header, each block in the physical data store provides an 

area at the head of the block for implementation details. The first word (4 bytes) of each 

block is reserved for Status information.  
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The in-use vs. free [deleted] status of a block is indicated by the status word at the 

head of the block and is thus information that is persistent. The GetNew method will 

return a previously deleted block rather than enlarge the file, if possible. The ALV buffer 

manager also provides some tuning capability that permits the implementer to change 

certain parameters in order to tailor the performance of the ALV system for specialized 

needs. Currently, the parameters are implemented as static attributes and thus require 

compilation to change. It would be very easy to modify this behavior to allow tuning 

parameters to be passed from the client through the SQL parser down to the 

ALVRecordFile and ALVDataFile classes.  

The constant SAFE_PAGE_SIZE is set at 4096 (bytes). This controls the size of 

the page and is currently set to the size of a sector in the Windows operating system file 

subsystem. Buffer blocks are multiples of this value and are created to align with memory 

page boundaries using the VirtualAlloc Windows API call. This permits the option of 

writing them to disk without Windows OS buffering.  

There are two essential options built into the ALV buffer manager: 1) permit the 

buffer be as small as possible to support the locking mechanism, and 2) either rely on the 

Windows OS for performance buffering, or set the initial buffer size large and disable 

Windows OS caching altogether. The second option for allocating the buffer gave no 

performance benefit compared to the first. The current implementation is the latter. The 

buffering mechanism has been tuned to support multiple reads and temporal writes. Thus, 

the only blocks in memory are those associated with concurrent (shared) access and those 

that are involved in sustained operations (transactions). 
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There are parameters to set memory size and control locks. The 

i_bufferMBlockCount parameter of the OpenExisting/OpenNew commands sets the 

initial number of blocks of memory to reserve for the buffer manager buffer. This will 

grow if and only if it is required in order to support the number of locked blocks 

simultaneously held. The i_fileFlags parameter of the OpenExisting/OpenNew 

commands is passed to the Win32 CreateFile command (via the physical data store 

layer). Choices for each available flag and their contingencies and consequences are 

listed below: 

 

 FILE_FLAG_OVERLAPPED – this flag must be set if multithreading is used. By 

default, the operating system will cache file blocks in memory for maximum 

performance, delaying disk updates significantly so that multiple updates can be 

made without a disk write. This can be changed by setting 

FILE_FLAG_WRITE_THROUGH or FILE_FLAG_NO_BUFFERING. A hint 

about expected file access patterns may optionally be supplied by setting 

FILE_FLAG_RANDOM_ACCESS or FILE_FLAG_SEQUENTIAL_SCAN.  

 FILE_FLAG_SEQUENTIAL_SCAN causes read-ahead so that several 

consecutive blocks will be fetched from disk even if only one is requested.  

 

4.3.4.2 Concurrency Support 

An additional overseer subprocess (the ALV_Manager) is responsible for 

ensuring that only a single thread is active in an instance of this class during a call to the 
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constructors and destructors: OpenNew, OpenExisting, or Close. While a file is open, the 

buffer manager supports concurrency via block-level reader-writer locking with writer 

priority. Multiple threads can own a reader lock on a single block at the same time, but 

only one thread can hold a writer lock on a given block. The lock state of a block is a run-

time datum that is known to an active buffer manager instance but is not recorded in any 

way in the data file.   

The Get method obtains an MBlock for a given blockNum with the requested 

reader or writer lock type. If necessary, the calling thread will suspend execution until the 

desired lock type can be obtained. There is a GetIfAvailable alternative that will not 

suspend execution. The GetNew method obtains an (MBlock, blockNum) pair with a 

writer lock for a file block that was either previously deleted (preferred) or that extends 

the file. The initial contents of MBlock are undefined. The pair is returned already 

marked as changed. A thread that obtains a locked (MBlock, blockNum) pair via a call to 

Get or GetNew is expected to regard the locked pair as "thread-private" data not to be 

shared with other threads. Sharing locked pairs would subvert the locking system, and 

lead to undefined results. The buffer manager does not presently enforce this requirement 

by tracking which threads obtained which locks

17

. 

Calling MarkChanged or MarkDeleted on a WRITER-locked MBlock marks the 

block as changed or deleted. As presently implemented, you can only alter the mark of a 

block in the direction unchanged -> changed -> deleted. For example, calling 

MarkChanged has no effect if MarkDelted has already been called. The block manager 

                                                

17

 Additional overhead will be necessary to support deadlock recovery.  
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propagates changes to disk only when [Batch]UnlockSave is called, rather than 

immediately when the MarkChanged/MarkDeleted methods are called. Disk images are 

updated only for blocks that have been marked changed or deleted. 

If an MBlock is not marked changed or deleted when it is unlocked, the buffer 

manager assumes that the MBlock can be retained in its buffer as a faithful copy of the 

file block. This copy may or may not be refreshed from disk the next time a thread 

requests the block. Thus a thread must ensure that a block is marked changed before 

unlocking if any changes have in fact been made to the MBlock. 

Calling [Batch]UnlockDiscard will discard changes. If (MBlock, blockNum) was 

obtained with GetNew, discarding changes means effectively deleting the block and 

making blockNum available for a subsequent GetNew. If (MBlock, blockNum) was 

obtained with Get, discarding changes means that a subsequent Get will obtain a fresh 

copy of the disk image if and only if the block was marked changed or deleted. Every 

(MBlockP, blockNum) pair that is obtained from Get or GetNew must  be unlocked via a 

matching call to [Batch]UnlockSave or [Batch]UnlockDiscard.  

 

4.4 Analysis 

This section describes the analysis performed while implementing and 

experimenting with the clustered version store and its individual components. All of the 

experiments conducted were run on a 3.0Ghz AMD processor-based system running 

Windows XP Professional. The disk subsystem used was a hardware raid system 

incorporating two S-ATA physical devices in a mirrored arrangement. The experiments 
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were repeated using a conventional IDE-133 device with little or no variation in the 

measurements

18

. 

 

4.4.1 Caching and Performance 

The cache provided by the buffer manager is inherently write-through. Since the 

cache mechanism is an additional layer above the file system of the host operating 

system, performance for writes is optimized by using a write-through mechanism

19

. 

Depending on parameters passed when the file is opened, the operating system can be 

instructed to cache file blocks for highest performance, to implement write-through 

semantics for additional data safety, or to refrain from doing any caching at all on its 

level. This mechanism is designed for maximum flexibility and to provide support for 

transaction processing. 

The best performance, by a factor of 10 or more for small files, was obtained in 

tests with the default operating system caching behavior. These tests were performed as a 

set of reads and writes using the ALVDataFile with a block caching mechanism. The 

caching mechanism was built to store frequently used blocks into an array of blocks in 

memory. Performance was the same whether the initial size of the buffer manager buffer 

was 1 block or 512 blocks. This performance superiority dropped some with file size. 

With no write-through of file changes, the default operating system caching has a greater 

risk of data loss if the system suffers from a catastrophic failure. Of the safer alternatives, 

                                                

18

 This is expected because the differences in the performance of the physical devices and their access 

protocols are not significant. Although throughput on the S -ATA devices theoretically could be faster, the 

addition of the raid subsystem nullifies any advantage over IDE -133 devices. 

19

 That is, as changes are made they are written directly to  the physical store.  
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performance was about the same for FILE_FLAG_WRITE_THROUGH with a buffer 

manager initial buffer size of 1 or 512 blocks, and for FILE_FLAG_NO_BUFFERING 

with a buffer manager initial buffer size of 512 blocks. All of these choices reduce disk 

I/O on reads but not on writes. Since the buffer manager’s memory is not shared among 

instances, we conclude that a small initial buffer size (e.g. 1-32 blocks) with either 

default operating system caching or FILE_FLAG_WRITE_THROUGH is the best 

choice. 

 

4.4.2 Blocksize Experiment 

Two experiments showed that the ALVDataFile was performing as expected and 

demonstrated its ability to scale to larger block sizes and larger files. The experiments 

were conducted using a special executable written to include only the ALV file I/O class 

ALVDataFile. A series of twelve tests were conducted in total which simulated read and 

write loads as well as file scans and random access. All experiments were conducted 

using file sizes of 1Mb, 800Mb, and 2.2Gb. 

One experiment was to decide what the optimal blocksize should be and what 

effect it would have on read and write performance. In this case, write performance was 

chosen to be implemented as a create (adding a new block/cluster). Create is the most 

expensive write operation because it requires allocating a new block to the file store and 

therefore interacts with the file system more than a simple replacement operation. Figure 

4-14 depicts the results of a series of tests to show the performance based on blocksizes 

ranging from 512 bytes to 8194 bytes. The increase in blocksize showed a fairly linear 
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progression of access time (in seconds). Larger blocksizes of 16k and 32k, which 

exhibited the same linear time increase. Figure 4-14 depicts the results of these 

experiments. 

Another experiment involved the study of cluster sizes based on block size. The 

test was designed to show what influence, if any, the cluster size had on access time. In 

theory, reading more data at one time should decrease the access time. Tests were 

conducted using block sizes ranging from 512 bytes to 8194 bytes and cluster sizes 

ranging from 1 to 64 (in powers of 2

20

). Figure 4-15 depicts the results of this experiment. 

The results showed the expected performance and clearly demonstrated the premise of 

clustering in action. 
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Figure 4-14: File Access Experiment 

 

                                                

20

 This choice may seem ubiquitous, but has profound implications for the buffer manager with regard to 

optimizing page replacement, but more importantly it simplified address mapping.  
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Figure 4-15: Walk by Cluster Experiment 

 

 

4.4.3 Real World Performance 

This section presents observations of the ALV system running in a real-world 

environment using live data constructed from actual data sources. Experiments were 

conducted using meaningful data and demonstrate significant milestones in the 

integration of the ALV system in a world-class database system. 

A series of experiments was conducted to measure the performance of the ALV 

physical store and compare it to two file stores used in MySQL. The experiment was a 

simple table scan of three tables. A complete description of these tables and their 

composition can be found in Appendix A. A table scan is where every block in the file is 

read sequentially.  
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Given the special properties of the ALV physical store (clustering, differing 

attribute metadata per attribute chain, etc.), data had to be constructed so that the MySQL 

implementation could approximate that of ALV and vice-versa without the aide of 

indexing mechanisms. Eliminating indexing mechanisms enabled a more accurate 

comparison of the two physical store access times. Data for this experiment was taken 

from instrumentation mechanisms embedded in the live MySQL source code. 

In light of such manipulations, the primary focus of this experiment was to show 

how the ALV physical store ranked in speed (access time) of small, medium, and large 

data sets as compared to MyISAM and InnoDB. Figures 4-16 through 4-18 shows the 

results of those experiments for table sizes ranging from 599 to 201,053 entities. 

The results show that the ALV physical store has good performance as compared 

to MyISAM with small and medium sized tables, but poorer performance when table 

sizes become large. However, this performance is not typical of how the ALV system 

will be used. The addition of a clustered version store index (see Chapter 5) greatly 

enhances the performance of the ALV file retrieval mechanisms.  

Furthermore, the times shown are actual times and do not consider the significant 

size differences between the ALV physical store and MyISAM (or InnoDB). That is, the 

ALV system is reading 60 times more data for the small and medium table and 20 times 

more data for the larger table. When one considers this factor, the performance of the 

ALV physical store is much less than 20 or 60 times slower. In fact, the ALV physical 

store retrieval times were approximately 7.5, 8.2, and 8.5 times slower respectfully for 

the three tables read. 
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Figure 4-16: Results of File Retrieval Experiments - Small Table 
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Figure 4-17: Results of File Retrieval Experiments - Medium Table 
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File Retrieval - Large Table
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Figure 4-18: Results of File Retrieval Experiments - Large Table 

 

 

Table 4-2 lists the statistics for the files generated during this experiment. Data is 

given for both the ALV physical store and the MySQL files created. The statistics show 

that the ALV files are much larger than the MySQL files. This difference is expected for 

two reasons. First, the ALV physical store is a clustered file structure with a blocksize of 

4096 bytes where each block contains the attribute versions for a single entity. Second, 

ALV uses block space padding (i.e., using a fixed blocksize with freespace to enhance 

writing and updating attribute chains). MyISAM and InnoDB use a packing mechanism 

that ensures minimal disk space consumption. Thus, comparing the two technologies on 

disk space alone is not reasonable.  
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Customer Adults ORF 

ALV 

1,484,200 77,588,297 145,520,114 

MyISAM 

24,576 1,213,440 6,953,984 

% Diff 

60.39 63.94 20.93 

Size (Rows) 

599 32,561 201,053 

#Blocks 

369 19,395 36,403 

Avg Att/Blk 

1.6233 1.6788 5.523 

Table 4-2: File Retrieval Experiment Data 

 

 

Table 4-2 shows the average attribute values per block of each table. This is 

equivalent to the concept of blocking factor found in traditional database systems. In this 

case, we can see that the ALV physical store stores approximately 1.6 attribute versions 

per block for the small and medium tables and approximately 5.5 attribute versions per 

block for the larger table.   

Figure 4-2 also compares the blocksize of the MyISAM files versus the ALV 

files. The third row shows the percentage of the ALV file size that the MyISAM files 

consume. The fourth row lists the number of rows in each dataset and the fifth row lists 

the number of blocks that the ALV files consume. 

Therefore, the table scan performance of the ALV physical store is comparable to 

that of MySQL for smaller and medium sized tables, but table scans suffer for larger table 

sizes. Fortunately, table scans are rare in versioning applications. Most queries in 

versioning systems are targeted for specific attribute version chains that can be accessed 

by reading only a single block or block chain [Mart02].  
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4.5 Conclusion 

The clustered version store is the cornerstone of the ALV system. By 

demonstrating the ability to store attribute versions in a dedicated, specialized physical 

storage mechanism that utilizes a buffer management system for caching, the clustered 

version store is the foundation of a versioning system that can be integrated into a 

relational database environment. The physical store is sound and performs admirably 

when compared to the commercially available physical store available in MySQL

21

. 

 

4.6 Future Work 

Although the clustered version store performs well and outperforms the native 

storage mechanism of MySQL, there are areas that can be improved. Despite the 

tendency and practice of database system vendors to rely on the base operating system for 

file I/O support, much could be gained by developing a native I/O mechanism that 

communicates directly with the hardware. This would enable a more efficient use of disk 

space and eliminate the need to coordinate directly with the operating system. The 

drawback to this approach is that an operating system driver must be created so that the 

operating system can communicate with the device. It would be enlightening to develop 

such a storage mechanism and compare its performance with that of native data stores 

and the data store presented here. 

On a more subtle scale, there are improvements that can be made to the clustered 

version store that may increase performance even further. For example, an active space 

                                                

21

 Although MySQL supports a number of physical stor es, the comparisons made in this work were down 

with MyISAM because MyISAM most closely resembles that of the ALV physical store.  
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reclaim process could eliminate the concern for large gaps in the file structure under 

heavy insert and delete operations. Furthermore, an active space reclaim process would 

eliminate the need to perform periodic maintenance on the files.  

A vulnerability of the implementation of the clustered version store is that it does 

not currently have an active deadlock prevention algorithm. Additional overhead 

mechanisms may be necessary to support active deadlock recovery. 

For a more robust application of versioning, one would also consider expanding 

the buffer management subsystem to include recovery mechanisms that can recover data 

in the event of an unexpected system termination. 

Aside from the above improvements, the most beneficial additional (perhaps even 

necessary improvement) is to make the implementation code as platform independent as 

possible. The system currently runs on a Windows-based operating system. Additional 

work will be necessary to make some of the lower-level I/O code platform independent. 

Fortunately, the feasibility of platform independence has already been demonstrated in 

the MySQL source code and could be achieved by applying the same approach. 
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Chapter Five – An Indexing Mechanism for fast Version Retrieval 

 

 

 

Abstract 

Given that there exists a clustered version store capable of efficiently storing and 

retrieving version information in the form of attribute versions and attribute chains, the 

access to this physical store must now be optimized for fast retrieval of data sequentially 

and randomly. This chapter shows one implementation of an indexing mechanism using a 

B+ tree for indexing the clustered version store and reports its performance as compared 

to a commercially available storage mechanism. 

 

5.1 Introduction 

A fast indexing mechanism is required to ensure high speed performance of 

retrieval of versioned data for a versioning system that can be supported in a relational 

database system. This chapter presents an indexing mechanism for fast sequential and 

random access of versioned data in a clustered version store within a versioning system. 

This system, called Attribute-Level Versioning (ALV), is an extension of the MySQL 

database management system.  

The following sections present the current research on database indexing and 

implementation, the technology and design of an indexing mechanism, an analysis of the 

performance of the mechanism, and a conclusion as to its success in meeting the goals 
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defined above. The chapter concludes with a section outlining future work opportunities 

to improve the indexing mechanism presented. 

 

5.2 Background 

Storage facilities available in large computing systems allow efficient storage, 

updating, and retrieval of data from a physical storage device. However, computing 

systems must retrieve the information from the physical store and place it in memory 

before applications can use it. The process of accessing data on the physical store must be 

made efficient for files of great size [Come79]. Although it is many times faster to access 

data in memory, it is also generally accepted that entire data sets will not fit into memory.  

Indexing is the process of identifying the location of things within a larger context. That 

is, an index makes it easier to find a single item among a large set of items

1

. In most 

cases, the objective is to locate only a subset of the data items stored [Marc83]. This is 

exactly what database implementers want to do in order to speed up access to a particular 

datum within a data set. Some alternative names for indexing are external searching 

[Sedg98], advanced data structures [Corm01], and ordered indexes [Baye72]. 

Indexing mechanisms should not be confused with ordering mechanisms. 

Ordering mechanisms such as mergesort, heapsort, and their many variants are not 

indexes per se [Wegn89]. While they do create an ordering and can be used to access data 

using that ordering, all mechanisms of ordering eventually change the order of the data 

                                                

1

 Interestingly, the common definition of indexing does not require that the items be related in any way 

other than being grou ped together in a (loosely) coupled set. The common application of the definition does 

require that the items maintain a relative position within the set where order need not apply.  
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on the physical media. Some manage this by using logical pointers that are redirected, 

others physically relocate the data items. Indexes are designed to be used in addition to 

the data without requiring the data to be relocated when ordering is desired. 

Indexing algorithms and data structures have been around for a long time, even 

before the proliferation of personal computers and before the days of the behemoths of 

the golden age of computing

2

. Early pioneer work in the realm of databases systems like 

that of IBM’s System R and INGRES have incorporated indexing mechanisms to 

enhance the performance of reading data from the physical store [Cham81a, Ston76]. 

While indexing gives the ability to quickly retrieve data, it also has the 

disadvantage of slowing down update operations by requiring an insertion into the index 

for every (unique) datum added [Date04a]. There are many and varied mechanisms; most 

of which are specialized for a given set of conditions. However, there are a few that have 

been proven to be robust and adaptable for database applications. The most important 

characteristic of these mechanisms is the support for persistent storage along with or in 

addition to the data. These include indexed sequential files, hashing, and trees. Most of 

the database systems in use today employ one or more of these mechanisms [Date04a]. 

There are many algorithms and data structures devoted to searching and indexing. 

These include, balanced trees, binary trees, balanced binary trees, multiway trees 

(specifically B+ trees), hashing, indexed sequential files, stacks, queues, linked lists, and 

                                                

2

 The golden age of computing refers to the days when a single computer co nsumed the space of several 

mini -vans. Some of the greatest innovations employed today in every computing device known to man 

were invented or conceived during this historical period.  
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many more [Corm01, Knut97, Sedg98]. This work examines those indexing methods 

directly applicable to database systems. 

Trees as indexes are structures that divide the indexed keys into nodes in a data 

structure where each node (except the leaves) has a specified number of cells that can be 

used to direct a traversal to a lower node. Typically, these nodes contain the index key 

values in some predetermined order. Figure 5-1 depicts a typical tree structure designed 

to contain keys and references to the next node in the tree. The leaves are designed to 

point to locations outside the tree which are typically used to reference blocks of data in 

the data store. These trees are called multiway trees [Knut97] because each node can 

have a number of pointers to other nodes, except for the leaves which are used as 

described above. Multiway trees are the foundation for more sophisticated derivatives 

known as B trees

3

 and B+ trees. 

The keys in the multiway tree are stored such that each node has at most N+1 

references where N is the desired number of keys each node can have. The keys must be 

ordered in a specified order (typically ascending). Furthermore, each key must be greater 

than or equal to the lowest value key in the node beneath it (child). Thus when the 

location of a reference to a page on disk is needed, the index is searched starting at the 

root, searching its list of nodes using either a linear or binary search [Knut97] until a key 

value that is greater is found, then dereferencing the previous entry’s node pointer and 

following the node pointers to the next node down the tree. The search process repeats 

until the leaf node is located and the reference is obtained by again searching the list of 

                                                

3

 It is tempting to conclude that the ‘B’ in B trees stands for balance d or a host of other b-words. However, 

it is generally accepted that the ‘B’ in B tree stands for ‘Bayer’ for his many contributions on the topic.  
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nodes using either a binary or linear search [Corm01]. The use of N+1 locations for keys 

permits the use of algorithms that expand and balance the tree for optimal performance. 

Root

 

Figure 5-1: Multiway Tree Structure 

 

 

5.2.1 Indexing Methods 

With indexing, we are concerned with finding the data we actually want quickly 

and efficiently, without having to request and read more disk blocks than absolutely 

necessary. There are two types of searching that can be performed. An internal search is 

conducted within the file while it is in memory. When the file will not fit in memory, we 
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conduct an external search using a mechanism that resides outside the file [Gulu02]. The 

indexing methods presented in this work are all external mechanisms.  

The primary benefit of indexing is that it allows us to search through large 

amounts of data efficiently without having to examine or in many cases read every item 

until we find the one we are searching for. Indexing therefore is concerned with methods 

of searching large files containing data that is stored on disk (data store). These methods 

are designed for fast random access of data as well as sequential access of the data. 

Interestingly, block size and the ratio of the cost of accessing a new block to the 

cost of accessing items in a block affect performance of inserting data, but the 

implementation of these methods is largely unaffected by the values of these parameters 

[Sedg98].   

In the context of indexing, we shall equate the concept of a page from virtual 

memory to that of a block of data on a physical store. For the purposes of discussing 

indexing mechanisms, page and block are synonymous. Similarly, the concept of a search 

for a page and seek for a block shall both be referred to as a read. For example, if an 

index contained references to blocks of data on disk and it required an average of 4 

searches of the index pages to locate an item and an additional seek to get the block of 

data from the data store, we would say the operation required 5 reads; 4 reads of the 

index pages and 1 read of the data store. 

There has been research to simplify addresses to data either in memory or on disk. 

The most sophisticated examples are those that transform addresses into meaningful or 

unique keys [Seve76]. However, most systems today provide base addressing 

mechanisms that do not need such sophisticated transformations. 

Although there are many indexing mechanisms available to choose from, the most 

popular implementations described in literature have been indexed sequential files, 

hashing, B trees and its variant B+ trees. The following sections describe each of these 

techniques in detail. 
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5.2.1.1 Indexed Sequential Files 

An indexed sequential file is a file designed to hold a tree structure of keys and 

references to data pages on disk. Figure 5-2 depicts an example ISAM structure 

containing a set of keys. Note that the tree has a root node that contains a reference to leaf 

pages that, in turn, contain references or addresses of pages on disk. This structure is 

easily stored on disk by mapping the nodes to pages on disk. 
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Figure 5-2: Indexed Sequential File Structure 

 

 

This mechanism is very similar to the disk organization mechanism used in some 

operating systems. Some early operating systems used a two-level scheme; there the 
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lower (leaf) level corresponded to the pages for a particular disk device, and the level 

above corresponded to a master index to the individual devices. The top level containing 

the master index was kept in memory thus limiting access to any device to only 2 reads 

from disk: once the master index was traversed, one access was necessary to get the 

lower (leaf) level containing the device reference and another to read the device data 

from disk. This concept has been expanded to a third and more level hierarchical index in 

order to store more addresses

4

 [Sedg98]. 

Since this mechanism combines a sequential key organization with that of an 

indexed access method, the data store on disk that contains the tree described is called an 

indexed sequential file. The disadvantage of this mechanism is that it is intended for use 

in environments that do not change frequently consisting mainly of data retrieval. As 

such, the tree requires reorganization every time data is added to the data store. 

Mechanisms have been devised to reduce the need for reorganization, such as the use of 

partially filled nodes and overflow nodes, but none eliminate it [Sedg98]. 

 

5.2.1.2 Hashing 

Another method of indexing uses hash tables

5

. Hash tables were created for the 

situation in which the keys that form the index values are not typical range or numerical 

values, rather they may be values that have either no or limited ordering properties (e.g., 

strings) [Sedg98, Rama03]. In this case, hashing functions are used to assign pseudo-

                                                

4

 Sometimes referred to as a directory. 

5

 Also called scatter storage [Knut97] and hash addressing [Date04a] . 
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randomized values to the keys, which are guaranteed to produce a unique value

6

 and/or 

detect collisions on duplicate values, providing a mechanism to store the resultant variant 

value. Collision resolution techniques include bucket chaining and similar multi-valued 

lists [Knut97].  

The hashing function is an arithmetic function based on the original value of the 

key. For example

7

, a hash function could take an arbitrary character string and convert 

each character to a numeric value based on an enumeration list, e.g. RED = 0, WHITE = 

1, BLUE = 2, etc. Two major types of functions work best. One is based on the use of 

integer division (e.g., modulo), the other is based on multiplication [Knut97]. 

Hash function results are not normally associated in an ordered manner. Whereas 

the result of the hash function is typically an ordinal value and can be ordered, it is 

usually desired to keep the original values used to calculate the hash value in a different 

order. Methods to preserve this order by using specialized calculations [Garg86]. 

Interestingly, these implementations require less storage than other indexing methods 

(e.g., B+ trees), but are limited in their implementation due to the complexity of the 

hashing function. A similar mechanism for ordering hash tables is the use of Trie hashing 

[Litw81]. This mechanism stores the data in the order desired without affecting the 

performance of the hash itself.  

Storage of hashed values is typically done in a multidimensional array, which 

makes it a prime candidate for in-memory use as well as for persistent storage. When 

                                                

6

 The study of hashing functions is beyond the scope of this work. Research and literature exists that fully 

explains the use of hashing functions, collision resolution, and uniqueness properties [Corm01].  

7

 Trivial perhaps, but valid.  
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storing the hash table in a data store, the array itself is treated as a file where each row of 

the array is written to a different block or by storing several rows in a block of arbitrary 

size. The array is then read from disk and loaded into memory as either a 

multidimensional array or as an array of linked lists.  

Hashing illustrates the classical computer science solution to a space versus time 

tradeoff. On one hand, if there were no memory limitations and indexes could be stored 

indefinitely in secondary storage, indexing can be made very fast by simple manipulation 

of in-memory data structures and memory references. On the other hand, if there were no 

time limitations

8

, then one could employ very sophisticated indexing mechanisms that 

permit the searching and location of any datum in a vast amount of data. Hashing 

provides a way to use a reasonable amount of memory (the memory needed to store the 

resulting hash function values and the reference (pointers) to data on the data store) and 

time to execute and traverse the index, which requires the calculation of the hash value 

and looking up the reference in the hash table. In fact, it is possible to tune the hash table 

for hierarchical traversal

9

 using cascading hash functions, which permits the storage of 

portions of the hash table as well as simulating a tree-like structure of smaller hash tables 

[Sedg98]. 

The primary advantage of using hash tables for indexing is the fast retrieval of the 

index value and, if implemented correctly, the substitution of the hashing function for the 

more traditional traversal mechanism for tree- or graph-based structures.  

                                                

8

 That is, the tim e to execute a query and return results is not important.  

9

 Found in the literature as modular hashing [Sedg98].  



www.manaraa.com

Bell 2005 – Attribute-Level Versioning: A Relational Mechanism fo r Version Storage and Retrieval   166  

 

The features and performance characteristics detailed above make hash tables a 

popular choice for database implementers. In fact, hash tables are so utilitarian that they 

are often employed to solve computer science problems of system structure and 

execution. For example, the ALV indexing mechanism and the clustered version store use 

hash tables for fast lookup of frequently used values such as attribute lists and in-memory 

block (page) lists. 

One variant of hashing worthy of note is called extendible hashing [Fagi79]. 

Extendible hashing guarantees no more than two page faults to locate data associated 

with a given key. Unlike conventional hashing, extendible hashing has a dynamic 

structure that permits the hash buckets to expand, or extend, to accommodate growth of 

the hash table. Fagin’s results show that extendible hashing could provide an alternative 

indexing mechanism. 

 

5.2.1.3 B Trees 

The B tree was described in the seminal work by Bayer and McCreight [Baye72] 

who were the first researchers to consider the use of multiway balanced trees for external 

file searching. Most use the term B tree to refer to the algorithms suggested by Bayer and 

McCreight [Sedg98]. B trees have been used in a wide variety of domains including 

spatial databases, multimedia databases, temporal databases, and object-oriented 

databases. Each of these domains requires an index structure that is specially designed 

and tailored for the domain. Interestingly, in each of these domains methods have been 
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used that are based on one distinct structure – the representative B tree-based structures 

and their search operations [Ooi01].  

A great deal of effort has been put into improving fan out

10

, which minimizes the 

height of the tree, leading to faster searches of the tree for keys. Research has also been 

conducted to study page organization. Results have shown that the various techniques of 

reducing page size, and therefore the internal node size, can have significant effects on 

performance [Lome01]. The majority of these advances have been incorporated into 

implementations of B trees [Corm01, Sedg98]. 

 

A B tree of order

11

 m data structure has the following properties [Baye77a, 

Gulu02]: 

 Every node has at most m children. 

 Every node, except for the root and the leaves, has at least (m/2) children. 

 The root has at least two children, unless it is a leaf. 

 All leaves appear on the same level and carry no information (data). 

 A nonleaf node with k children contains (k-1) keys. 

 A leaf is a terminal node (one with no children). 

 All paths from the root to a leaf node have the same length (i.e. Height balanced) 

 All non-leaf nodes contain elements (reference keys) which are ordered  

 

                                                

10

 Fan out is used to describe the operation that occurs when keys are added to nodes that are already full. 

The basic strategy is to minimize t he number of nodes at any given level by keeping the node’s key list at 

least half full.  

11

 Order refers to the number of keys contained in the node  
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Comer explains B trees best; “In general, each node in a B-tree of order d contains 

at most 2d keys and 2d + 1 pointers. Actually, the number of keys may vary from node to 

node, but each must have at least d keys and d + 1 pointers. As a result, each node is at 

least 1/2 full. In the usual implementation a node forms one record of the index file, has a 

fixed length capable of accommodating 2d keys and 2d pointers, and contains additional 

information telling how many keys correctly reside in the node,” [Come01]. Figure 5-3 

depicts a conceptual B tree with sample keys and physical references. 

When used as indexes for database systems, B trees provide many query 

operations: equality queries which ask the question of what entity has a particular value 

for a particular indexed attribute, minimum and maximum queries which ask what entity 

has the most/least value of a certain indexed attribute, and range queries which ask 

questions such as what entities have a value for an indexed attribute within a given range 

of values. These operations are easier because B trees contain the value of the attribute 

that is indexed within the tree structure and may not require retrieval of the entity from 

the physical store [Tuck04]. 

 

Since B trees are typically stored in memory, their performance has been shown 

to be approximately 5 ms

12

 to search the tree [Tuck04]. This value is an average and 

factors in the likelihood that at least one read from the physical store is necessary on 

average. The single greatest performance issue with B trees and their variants is the 

height of the tree and fan-out. The goal is to construct the tree with minimal height and 

                                                

12

 Tucker et. al. make the assumption that most hardware can support this timeframe [Tuck04].  
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with an optimal fan-out scheme that permits a balance of inserts and deletions in order to 

minimize the need to balance or reorganize the tree. 

 

Garg86 310:002

Effe84 305:030

Date04 034:021

Cham81 003:004

Baye72 001:002

Anon04 001:001

Jaco88 003:001

Date01 033:001

Alle03 002:002

Tuck04 901:003

Rawl81 401:001

Nath99 401:002

Maek87 004:001

Kuma03 005:001

Jea98  004:003

Piat00 057:001

Ooi01  450:011

Netz01 931:018

Yao77  901:002

Widm99 901:001

Vasw01 901:030 

Thur00 900:015

Spee93 900:001

Risc04 901:008

Root

Mark90 013:011

Abel01 012:012

 

Figure 5-3: Conceptual B Tree with Block Addresses 

 

 

The best quality of the B tree is that it provides mechanisms for the insertion and 

deletion operations to automatically balance

13

 the tree. With only a small penalty in 

performance, these mechanisms are guaranteed to minimize worst-case access time 

[Held78, Silb96]. This ensures that the tree will always perform on average log

d

n where n 

                                                

13

 Also called “self reorganizing,” [Tuck04].  
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is the number of keys and d is the order of the tree [Come79]. Figure 5-3 depicts a typical 

B tree. 

Notice in the example that each node contains keys that have addresses associated 

with them. This implementation of storing physical storage addresses with keys, albeit 

conceptual, was revolutionary when employed in early database systems. Since then, the 

B tree has been explored and modified to fit a host of applications. This research has 

produced a number of unique variants. 

 

 

Figure 5-4: B+ Tree Configuration 

 

 

An early variant of B trees was a B tree designed to store only a prefix of a key 

value in order to reduce the number of insertions during add operations

14

. This variant 

was called a prefix B tree and has been shown to increase performance when the range of 

key values have a large number of values that have the same prefix [Baye77]. 

Perhaps the most misunderstood variant of the B tree is the B* tree which is used 

by Oracle [Mcke01]. Knuth defines a B* tree as a B tree with each node at least 2/3 full 

                                                

14

 In SQL-speak, “INSERT.” 
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versus the convention of 1/2 full [Knut97]. This is accomplished by the balance methods 

used during insertion and deletion. This variant of the B tree is often confused with 

another type of B tree, also suggested by Knuth, the B+ tree [Come79]. 

 

5.2.1.4 B+ Trees 

B+ trees are the latest approach to providing indexes [Elma03]. B+ trees are more 

sophisticated than hash tables. They attempt to solve the problems of not knowing how 

many buckets might be needed, and that some collision chains might be much longer than 

others. They attempt to create indexes such that all rows can be found in a similar number 

of steps through the storage blocks.  

With the B+ tree, the order of the original data is its creation order. This allows 

multiple B+ tree indices to be kept for the same set of data records. Although academic 

implementations of B+ trees store the actual data in the leaf

15

, it is far more efficient to 

store references to the data in the leaves and access the data via a dereference rather than 

storing the information directly in the B+ tree physical store (file). This permits the 

implementation of a superior physical store (file) for the data and (possibly) a different 

mechanism optimized for B+ trees. This permits one to persist the B+ tree to the physical 

media, thus preserving its state and functionality until needed [Lank91, Tuck04].  

A B+ tree is a B-tree with certain improvements that permit efficient searches 

both sequentially and randomly. All references to the data are stored in the B+ tree's 

                                                

15

 Actually, there are many subtle differences of what a B+ tree really is. Navathe and Elmasri agree on one 

form while Knuth and others agree on a slightly different form. Most of these differences ce nter on the idea 

of fullness (1/2 vs. 3/4) of the nodes, others center on whether the tree should include the actual data or just 

the reference to the data on the physical media.  
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leaves, with only a few of the keys duplicated in the branch nodes [Haer78]. By 

convention, a B+ tree has leaves that are always at least half full—a new key enters the 

nonleaf part of the tree whenever a leaf splits [Gulu02].  

 

Some of the characteristics of B+ trees are (see figure 5-4 for nomenclature): 

 The lowest level in the index has one entry for each data record.  

 The index is created dynamically as data is added to the file.  

 As data is added the index is expanded such that each record requires the same 

number of index levels to reach it (thus the tree stays `balanced'). Likewise, 

deletion may require rearranging nodes that become empty

16

. 

 The records can be accessed via an index or sequentially.  

 Each index node in a B+ tree can hold a certain number of keys.  

 The B+ tree is called a balanced because every path from the root node to a leaf 

node is the same length. A balanced tree means that all searches for individual 

values require the same number of nodes to be read from the disk [Mcke01]. 

 

Deletion in a B+ tree can be more complicated than for B trees due to the way 

references are stored in the leaves. Efficient algorithms for deletion are available that 

solve the initial problems of balancing the tree [Jann95, Mael95]. Although B+ trees 

                                                

16

 Wirth notes that the deletion balance problem is more sophisticated than in sertion [Wirt76]. Some 

implementations simply do not permit rebalancing when deletion results in an empty node in a B+ tree. 

Instead, the nodes are left empty and only the keys are moved if necessary. This permits a tree to increase 

in size, but does not permit the tree to reduce. 
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perform well for searching, they do require additional space (memory, disk) and 

resources (CPU, memory) to maintain [Ho04]. 

Figure 5-5 depicts a conceptual B+ tree with keys and physical references 

displayed. Although it is possible that the internal nodes of a B+ tree could contain values 

that are indeed keys, it must be noted that this does not have to occur and, in fact, only 

occurs when the tree is built from existing data. Once the process of adding and removing 

data occurs, the internal nodes will no longer maintain copies of the key values 

[Come79]. Comer writes, “To fully appreciate a B+-tree, one must understand the 

implications of having an independent index and sequence set. Consider for a moment the 

find operation. Searching proceeds from the root of a B+ tree through the index to a leaf. 

Since all keys reside in the leaves, it does not matter what values are encountered as the 

search progresses as long as the path leads to the correct leaf.” 

Furthermore, the leaves also linked together giving the ability to easily iterate 

through a physical store without the need for repeated traversals of the tree. This gives 

the ability to iterate through a range of values starting at any arbitrary point. There has 

been an implementation of B+ trees that provides doubly linked leaf nodes, giving the 

ability to iterate both forward and back through the index keys [Baye72].  

B+ trees also provide the advantage of using dynamic allocation and release of 

storage and a guaranteed utilization optimal of 50%. These features and power of the 

structure makes B+ trees well suited for database applications that require sequential and 

random access to physical data stores. 
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Netz01

Anon04

Garg86

Effe84

Date04

Cham81

Baye72

Anon04

Jea98

Date04

Anon04

Tuck04

Risc04

Netz01

Maek87

Kuma03

Jea98

Piat00

Ooi01

Netz01

Yao77

Widm99

Tuck04

Thur00

Spee93

Risc04

Root

901:002

901:001

901:003

Block Addr

900:015

900:001

901:008

057:001

450:011

931:018

004:001

005:001

004:003

310:002

305:030

034:021

003:004

001:002

001:001

 

 

Figure 5-5: Conceptual B+ Tree with Block Addresses  

 

 

The use of B+ trees varies among database vendors and implementers. However, 

there are two general approaches with respect to what is stored in the B+ tree and how it 

is used to access data.  

The first approach is to maintain physical addresses in a separate data structure on 

disk. This approach is used in Sybase and early versions of Microsoft SQL Server

17

. The 

major advantage of this approach is that it requires only a single read from the physical 

                                                

17

 Microsoft purchased Sybase and ported it to the Windows platform and renamed it SQL Server. Since 

then, many changes have been implemented to enhance performance and scalability.  
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store to retrieve the desired data. The disadvantage is that a single insert can cause a split 

in the tree and cause up to half of the blocks of data to be moved in order to maintain 

order within the tree [Chon01]. 

The second approach is to maintain logical addresses. This approach is used in 

Compaq NonStop SQL on key-sequenced files and later versions of Microsoft SQL 

Server

18

. The major advantage is that the logical references to blocks need not change 

when data is inserted – they can be simply remapped to their new origins. The 

disadvantage is that at least one additional traversal of the tree is necessary once the 

datum is located [Chon01]. 

The approach taken in this work is similar to the second approach where the 

logical address of the data on the physical store is stored in the leaf nodes of the tree. By 

storing a logical value in the form of Block:Offset, the system need only traverse the tree 

once to obtain the logical address, then instruct the physical store to retrieve the desired 

block. Researchers have studied addressing schemes for divorcing the physical address 

from index stores for some time [Cook78]. The generally accepted mechanism involves 

that shown above where a logical block address and an offset or row address is stored in 

the index then later translated by the physical store access layer. 

 

5.2.2 Concurrency Issues 

A considerable amount of time during database access to physical stores is spent 

searching indexes for references to the data on the physical store. The B tree and its many 

                                                

18

 In this case, we refer to a clustered index.  
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variants have become the most popular of all of the indexing mechanisms [Date04a]. 

However, maximizing their effectiveness in concurrent operations is perhaps one of the 

most difficult tasks [Bili87, Neub99]. Concurrency is an essential element of any 

database system. These systems are used by multiple users running multiple processes to 

access data that may also be being accessed by other users and processes.  

Concurrent operations on B trees pose the problem of insuring that each operation 

can be carried out without interfering with other operations being performed 

simultaneously by other processes. If data is updated frequently, B trees can become a 

concurrency bottleneck because all access to the tree begins at the root [Rama03]. If the 

root node is locked with an exclusive lock, no other processes can use the index. This 

problem may create unacceptable bottlenecks which become critical if these structures 

are used to support highly contested access paths

19

, like indexes (metadata) to a database 

system. Thus, there is a need for locking protocols which assure integrity for each access 

and concurrency for the system. Also, since the cost of resolving deadlocks may be high, 

the solution should be deadlock-free [Baye77a]. 

Most of the solutions to this problem implement a technique of locking the 

affected nodes during write operations and permitting any number of reads to occur. 

Some of the more popular solutions use strategies such as logical undo logging, rollback, 

checkpoints, restart recovery, and fuzzy checkpointing [Silb96]. Some implementations 

lock the entire tree during writes while others attempt to lock only the portion of the tree 

                                                

19

 An access path is comprised of all of the execution sequences, algorithms, and data acquisition 

mechanisms which must be taken in order to search the database and retrieve the data requested by the user. 

These may include such operations as searching index es, tracing linked lists, or sequentially scanning the 

data for the requested information. A goal of good database system design is to provide efficient access 

paths to access data [Yao78]. 
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that is affected [Bili87, Held78, Lehm81]. However, locking the entire tree has been 

shown to perform poorly in a multi-user environment with a high degree of concurrent 

access [Srin93]. Locking only a portion of the tree has its own problems in that it is not 

always necessary to lock the nodes below the node being locked. Likewise, unless an 

update causes the balance operation to “push up” key values to form a new node, the 

nodes above a node affected may not need to be locked. Mechanisms described by 

researchers have shown that it is possible to write algorithms that can handle these 

situations. The version index mechanism described in this chapter uses similar 

mechanisms. 

One solution treats the leaves as a separate section so that when a process 

traverses to a leaf, the locks for the tree are released and a lock is then applied to the leaf 

node only [Jong90]. In the case of an insert operation, the subtree need be locked if and 

only if the insertion requires a rebalancing of the tree beneath it. This is complicated 

when the rebalancing operation requires pushing keys up the tree [Rals03, Tuck04]. 

Many algorithms used today avoid this complication by implementing a strong reader 

version of a reader/writer monitor [Ben90, Maek87]. In this situation, a process must 

request the write lock and wait until all other active readers complete their operations.  

It must be noted that the concurrency operations on a B+ tree is susceptible to 

disk reorganization strategies and could invalidate the physical address pointers. Thus, it 

is always necessary to reorganize (or rebuild) the index whenever the physical store is 

reorganized, but not the other way around. Reorganizing the index does not affect the 
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physical store addresses. Thus, it makes it much easier for the database implementer to 

create and drop indexes on the fly. 

Another concurrency access technique that is popular is that of batch updates. 

This mechanism saves updates to the tree in batches so that a series of updates is done all 

at once [Poll96]. In his work on postorder B tree construction, West adds, “Typically, no 

distinction need be made between building a tree versus adding a key to an existing tree. 

[West92] Some benefits can accrue if building a tree is regarded as a process distinct 

from adding keys to a previously constructed tree,” [West92].  

Implementations of this include variations that use a strong reader biased 

concurrency mechanism that permits a batch of updates to be completed only after all 

readers are finished. While this does solve many of the problems of concurrent access, it 

can lead to race conditions where as long as there is a reader, all writers are held. Even if 

a more sophisticated reader/write were used, the performance in an environment with 

many users remains to be demonstrated. As a result, this method was not implemented 

with the version index presented below. 

 

5.2.3 Transaction Processing Issues 

A transaction is a set of database operations designed to be executed such that all 

of the operations succeed or none do. If any of the operations fail, all of the other 

operations and their affect on the system must be discarded, hence making the transaction 

an atomic operation. Operations that retrieve data do not affect values in an index, but 

write operations do. The concurrency control system should control the concurrent 
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execution, so that the computer resources will be used as efficiently as possible while 

preserving the atomicity [Mond85]. 

A database system using B+ trees [Knut97] for indexing must provide 

mechanisms to permit transactions. These operations must be capable of marking nodes 

that have been changed by operations in a transaction, saving the original values of the 

data that has changed until such time that the transaction is complete. At this point, all of 

the changes are committed to the physical store (for both the index and the data). This is 

most problematic when updates (i.e., inserts or deletes) force the tree to rebalance. In this 

case, the both the original form and values for the tree must be preserved. 

Early research has solved the problem by locking the entire tree and waiting until 

the final commit is given to proceed. This practice has the side effect of slowing 

performance down considerably. In an environment that has many transactions executing 

simultaneously the system defaults to a single process queue [Mond85]. Later research 

has provided mechanisms to shadow the changes to a tree and has incorporated the 

locking process into the concurrency access methods. The version index described in this 

work has adopted a similar concept for transaction processing. 

 

5.2.4 Performance Issues 

The use of B+ trees as a file indexing mechanism is one of the primary 

advantages of B+ trees in that reorganizations are unnecessary, the algorithms are simple 

and easy to implement, and performance is good even under adverse conditions. It is 

interesting to note that the performance of B+ trees has not always been considered best. 
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Excepting for the moment the need for reorganizations, indexed sequential files 

also have simple algorithms and can have good performance. In fact, early comparisons 

of B+ tree and index sequential file performance showed that B+ trees performed less 

efficiently. Although the researchers noted that the conclusion could be application and 

even platform dependent, the results were still favorable for using indexed sequential 

files [Bato81]. 

Normal creation of the B+ tree index is done through insertion of keys and data 

references as data is added to the physical store. The issue is how to create a B+ tree from 

existing data. There have been attempts to optimize this process, but most database 

systems assume a certain penalty for creating a B+ tree from existing data. An algorithm, 

called batch-construction, “…inserts key values into a B+-tree in a random order without 

considering adjacency between them. This makes each page within the B+-tree accessed 

frequently, and thus, incurs large overhead for constructing the B+-tree. [This] algorithm 

gracefully solves this problem by processing all the key values to be placed on each B+-

tree page simultaneously when accessing the page,” [Kim01]. This algorithm is shown to 

be best for bulk loading a large database that has an enormous volume of key values. The 

problem of fast construction of the B+ tree is a concern that has not yet been addressed 

by the version indexing mechanisms presented. 

 

5.3 Version Indexing 

Preserving the relationship of the entity in the host table to the attribute versions 

in the version store requires an indexing mechanism that is capable of storing and 
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indexing the key attributes from the host table and relating them to the attribute version 

chains in the clustered version store. This is necessary in order to preserve the connection 

from the host table to the version store and to provide a way to retrieve attribute versions 

for a particular set of entities. When a version store is created for a host table, the host 

table is a versioned table, or has been versioned. 

The version index is a companion mechanism to the clustered version store. The 

version index is created when the clustered version store is created and does not require 

any additional operations on the part of the database professional. That is, unlike most 

database management systems, the ALV extensions to MySQL permit a single CREATE 

SQL command to not only create the table (clustered version store), but also to create the 

index (version index) at the same time.  

The version index was created using a B+ tree as the base data structure. The 

decision to use a B+ tree over the many other indexing mechanisms stems from the fact 

that the B+ tree is the best structure in dynamically changing environments, and B+ trees 

provide very good performance throughout a variety of uses. Hashing was not used for 

the same reason presented in [Cham81a], “…because it does not have the convenient 

ordering property of a B tree index.” 

One of the areas of concern for implementing an indexing mechanism for the 

clustered version store was how it would perform in comparison to a storage mechanism 

that does not use clustering. That is, it was desired that the index be created along with 

the table using a similar block format that avoided incompatibilities or competition while 

reading from disk. Furthermore, it was important to ensure that the index would require 
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far less space to store than the original data file. Researchers have concentrated on this 

area by focusing on the ordering of the keys in the nodes [Dong82]. However, most 

database systems have addressed this in other ways. For example, Microsoft SQL Server 

7.0 was rebuilt to accommodate a different storage engine that uses smaller page sizes in 

the effort to reduce the amount of space used by tables and indexes on disk [Dela04]. 

A mechanism developed at IBM predating B+ trees, which is very similar, is 

called a virtual storage access method (VSAM). In VSAM files, like B+ trees, there is a 

deliberate attempt to keep a certain amount of space, called distributed free space, in the 

index for insertions. VSAM, unlike traditional B+ trees, provides a way to do direct 

addressing rather than chaining to resolve addresses in the physical store [Keeh74]. The 

version indexing mechanism described in the following sections has been designed to 

include many of these features. 

Related work on adopting a B+ tree for use in a versioning scheme was presented 

by Lanka and Mays [Lank91]. Their implementation was primarily used to segment the 

B+ tree into several parts, thereby allowing for faster searching and for version retrieval. 

Some of the techniques presented in their work were used when designing and 

implementing the version store. However, in this case, the version store is designed to 

work with a specialized physical storage layer, the clustered version store, in order to 

index attribute version chains. An extension of Lanka’s and May’s concept has taken 

form in a variant of the version index that permits multiple hits per attribute version key 

(see section 5.3.1.1). 
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The hB tree presented by Lomet and Salzberg provided inspiration for the 

creation of the version index mechanism [Lome94]. In their work on the hB tree, Lomet 

and Salzberg presented many of the arguments for using a B tree in forming an index that 

stored versions of attributes. However, rather than storing the attribute versions in the tree 

itself, the version index mechanism leaves the attribute versions in the physical store 

storing only the reference to the data on the physical media. This makes the application of 

an advanced structure like the hB tree unnecessary and permits the use of more traditional 

and less complex mechanisms like the B+ tree that is design to store the physical 

addresses at the leaf-level.  

 

5.3.1 Technology Description 

The version index is implemented as classes within a C++ program. All aspects of 

the operation of the version index are abstracted and represented as classes. Starting from 

the lowest level, a class was created to model a B+ tree node which is then contained in 

class that implements the tree structure. Access to the index is via classes similar to the 

clustered version store. The structure includes a file access layer as well as a buffer 

manager and ALV manager tie-in for concurrency locking and transactions. These last 

two features are paramount to the execution of the version index and add considerable 

benefit to the effectiveness of the version index. 
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5.3.1.1 B

2

+ Tree 

Much of the research on B+ trees was focused on making the structure usable in 

concurrent and transaction processing environments. While there has been much success 

in these areas, there isn’t any implementation that considers concurrency and transactions 

as design goals for the internal workings of the data structure (the tree) itself. 

Furthermore, much of the research on caching in databases concerns adding support at a 

layer above that of the index structure. Figure 5-6 depicts the layout of the index 

structure. 

 

bptNode

bptIndex

ALVTrans

bptHash

bptFreeBlockQueuebptBlockMgr

bptDataFile

 

Figure 5-6: B

2

+ Class Diagram 

 

The best way to ensure success in any of these areas is to build these features into 

the tree structure itself. A new variant of the B+ tree was created that has support for 

concurrency, transactions, and buffering (caching) built into the data structure and its 

access methods directly. What is needed is a buffered B+ tree that supports concurrency 

and transaction. This new variant is called a B

2

+ tree.  
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The B

2

+ tree is constructed using a similar buffering technique to that of the 

clustered version store. In fact, the base class that implements the ALV buffer manager is 

used to implement the buffer manager in the B

2

+ tree. Like the clustered version store, 

the B

2

+ tree contains properties such as a status variable that records the state of the node 

(locked, unlocked, etc.) embedded in the tree node and in the physical store layout to 

accommodate the buffer manager technology. The buffer management mechanism 

therefore is designed to buffer the blocks of data that form the nodes for the tree. 

Whereas the buffer manager was added to the access methods for the physical 

store of the tree, concurrency and transactions are handled in a much more intimate 

manner. A detailed description of these mechanisms is given in the section 5.3.1.1 below. 

Each node of the tree contains additional data items to identify the state of the node and 

to permit the storage of seminal values to indicate the last known good operation for use 

in transactions. Together with the buffer manager, concurrency and transactions can be 

supported natively with these internal modifications. 

The initial use of the B

2

+ tree was to store a single reference key as the primary 

indexed value. The B

2

+ tree contained all of these keys and the leaves also contain the 

physical store address for the first block in the clustered version store that contains the 

attribute version chains. This is a typical use of a B+ tree in a database environment. 

What makes it unique, besides the buffering, concurrency and transaction support, is the 

fact that the index formed by the tree is an index of pointers to attribute chains rather than 

data itself. Although the attribute chains do contain data in the form of attribute versions, 

the index retrieves the data for the attribute chains and the traversal of the attribute chains 



www.manaraa.com

Bell 2005 – Attribute-Level Versioning: A Relational Mechanism fo r Version Storage and Retrieval   186  

 

is left to the clustered version store. Thus, the implementation of the B

2

+ tree is an index 

for optimizing the retrieval of attribute versions for a given set of entities in a host table. 

The greatest benefit of this mechanism is that it performs all of the operations of a B+ 

tree, allowing for many types of query operations, e.g., range queries, sequential access, 

etc. 

The storing of a single key reference to the host table isn’t effective for complex 

table types. A superkey

20

, a single valued key that artificially defines uniqueness, can be 

used to avoid the use of complex keys. However, it should not be necessary use 

superkeys when the nature of the database is a model of the real world. That is, if 

portions of a complex key can be used to define hierarchies or classes, and the desire is to 

form versions of these classes and hierarchies as well as the entities contained within, the 

need to version data based on the complex key is essential. 

One concept that the B

2

 tree supports, that most tree-based indexes do not, is the 

concept of concatenated keys [Wagn73]. This method was first used in VSAM indexing 

mechanisms. It permits the formation of an index based on multiple key parts to be 

treated as a single key. When a version index is created for a multi-part key reference, the 

B

2

 tree concatenates the keys together to form a composite key that is stored in the 

normal location in the tree. Searching for matches on a composite key where the search 

criteria contain all parts of the key is trivial. Searches that contain only part of the key are 

more difficult and require resolution to know when the user is asking for the first part, 

middle, end, or random portions of the key. The current implementation of the B

2

 tree 

                                                

20

 Also called a surrogate key [Date04]. 
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permits partial key matches starting at the left-most portion. For example, suppose a 

composite key is made up of four parts, a.b.c.d

21

. The B

2

 tree will permit searches with 

partial keys of a, a.b, a.b.c, and a.b.c.d (the trivial partial key). This mechanism, albeit 

somewhat more primitive than what has been implemented in VSAM [Wagn73], 

provides the ability to version a table having a complex key without the need to use super 

keys. 

 

5.3.1.2 mB

2

+ Tree 

What if a database user wanted to know which entities in a database had a certain 

attribute version (or set of attribute versions)? The version index described above will not 

help and the search will result in a simple table scan. This search is not as uncommon as 

originally suspected. In fact, during much of the data mining algorithm presented in 

Chapter 7, having the ability to search to find data that has certain attributes has been 

greatly enhanced. 

Conflict resolution on indexes is not a new idea. When resolving the indexes of 

distributed databases which are, in turn, distributed, the attribute values that are 

associated with an entity in the system may have different values depending on how each 

of the distributed nodes are used (updated) [Lim96]. In the case of indexing a clustered 

version store for the purpose of locating all attribute versions regardless of their 

association to the original (host) data, the implementation presented here permits the 

                                                

21

 The dot notation here is for emphasis and has no bearing on the actual data that is stored. Composite 

construction of the key is performed using object-oriented techniques in the source code such as classes and 

structures. 
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collisions to be stored in the index. This preserves the association of the attribute value to 

its host data while permitting fast searching for queries like those described in Chapters 1 

and 3. 

The mB

2

+ tree was created to solve this problem. Figure 5-7 depicts a mB

2

+ tree 

with one of the leaf nodes expanded to show how the multiple references are stored and 

accessed. The subscript m in the name indicates the tree can store multiple references for 

a given entity key value. This tree is a variant of the B

2

+ tree and has all of the features 

that mechanism supports while simultaneously storing multiple values for the values 

stored in the leaves. Implementation of the mB

2

+ tree was simply a modification of the 

node structures and access methods to add the features necessary to store and iterate 

through the multiple values. Thus, the mB

2

+ tree and the B

2

+ tree are the same 

implementation in the source code and differ only in their use. A mB

2

+ tree is used to 

index all of the attribute versions by storing the reference key to the entity and the B

2

+ 

tree is used to index the attribute version chains for all of the entities in a host table

22

. 

Performance of the mB

2

+ tree is the same as that of the B

2

+ tree for retrieving the 

first value stored in the leaf, but requires a linear retrieval to iterate through the linked list 

of physical store addresses. However, since many of the uses of this index will be query 

operations such as returning all of the entities that have the following set of attributes, the 

index is best used to simply retrieve the keys for all of the entities matching the search 

criteria which can be used in turn to search the host table for more information or to use 

                                                

22

 One could say that the MB2+ tree is an inverted B

2

+ tree.  
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the resulting list of keys to search the B

2

+ tree for all of the values for the particular 

attribute version in question. 

In the implementation of the ALV system, the B

2

+ tree is considered the primary 

index and the mB

2

+ tree is considered the secondary index. The mB

2

+ tree requires an 

additional query command to create and is therefore an option for database professionals 

to optimize the ALV version system. 
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Figure 5-7: mB

2

+ Tree Node View 
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5.3.2 Execution Sequence 

The execution of the ALV system follows the same model as that of MySQL. 

That is, it is a multithreaded server application where each command is given its own 

thread of execution. Once the thread is created, control is passed to the parser where the 

SQL statements are parsed and directed to the appropriate execution method. A very 

large case statement is used to contain all of the possible execution methods for all of the 

available commands.  

In order to integrate tightly with the MySQL system, the parser was modified to 

include catches for special ALV keywords. The location and type of keyword identified 

will cause the MySQL system to redirect commands to the ALV system for processing. 

For a complete explanation of this technique, to include the execution sequence from the 

parser to the ALV system and its implementation, see Chapter 6. For a more in-depth 

study into how the MySQL code was modified, see the Appendix B. 

What is of interest is the execution sequence during physical store access using 

the version index to retrieve a reference to the attribute version chains for a given set of 

entities. Figure 5-8 depicts a conceptual flowchart of how the index is used to retrieve 

data.  

First, the system checks to see if an index is available, which it always will be for 

the primary index. The system returns a pointer to the index class (executable). Control 

then passes to the ALV_Manager overseer which checks to see if the index has already 

been loaded into memory and if not loads it into memory (the root node). Next, the index 

is traversed down to the leaf (requiring log

d

n time, where n is the number of keys and d 
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the order of the tree). The index either returns NULL for no match or the reference 

requested. It should be noted that the B

2

+ tree performs this execution in the same 

manner used by all B+ trees in database systems. The mB

2

+ tree differs only in that it 

permits the iteration of a list of reference values. 

 

Key Found

Request Index for 

CVS

Read Tree into 

Memory

Is Index in 

Buffer?

Return Reference

Return NULL

Root

Start

Yes

No

Yes No

End

Traverse Tree

 

Figure 5-8: Execution Sequence for the B

2

+ Tree 
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5.3.3 Class Descriptions 

A great deal of information is available for the implementation of B trees and B+ 

trees [Anon04, Date04, Elma03, Rals03, Rama03, Silb96, Tuck04]. Thus, it was not 

necessary to reinvent the data structures that make up a typical B+ tree. The only 

difficulty was creating an implementation written in C++ that supported the concept of 

storing the reference values in the leaves and leaving deleted key values in the nodes as 

reference in order to minimize balancing of the tree. 

The following sections describe the major code implementations and classes 

created to implement the version index. Figure 5-6 depicts a high level class diagram for 

the code implementation of the B

2

+ Tree. They are presented in order starting from the 

internal representation of nodes to the arrangement of the index on disk. 

 

5.3.3.1 bptNode 

The bptNode class is used for structuring a tree node. It is used to form a B

2

+ tree 

(or mB

2

+ tree

23

)-based version index. All of the internal mechanisms and data structures 

are hidden from the caller (the bptIndex class) and the external code does not need to be 

concerned with where items are stored in the node when it is stored on the physical 

media. This permits a flexible storage mechanism that is modularized and therefore can 

be maintained or altered without requiring the host (bptIndex) to be modified or rebuilt. 

The bptNode has two states, a leaf node or an internal node. This is set when the 

node is created. The differences between the two states are: 

                                                

23

 It should be noted that a B

2

+ tree could be considered a mB

2

+ tree with the maximum number of keys in 

each reference set to 1. 
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 Leaf nodes store an array of (key, value) pairs, where value[i] goes with key[i]. 

Both key and value have a fixed size and type for each tree, according to 

possibilities in bptKeyAndValueTypes.h. 

 Internal nodes, store an array of (key, childId) pairs, where childId[i] is a (1-word) 

bptNodeId that refers to the child with key[i] <= child_key < key[i+1].  

 

Internal nodes do not actually store key[0], which is implicitly equal to the 

splitting key found in the common ancestor of the current node and its left neighbor (or to 

minus infinity). They do, however, store childId[0], whose keys satisfy key[0] <= 

child_key < key[1]. Similarly, when i is the last index used in an internal node, the keys 

of childId[i] satisfy key[i] <= child_key < right_neighbor_key[0]. If a copy of key[0] 

were included in the internal nodes, then the internal node methods could be identical to 

the leaf node methods (modulo the different value types and sizes). In that case also, each 

tree level would conceptually constitute a complete linked list of (splitting key, subtree) 

pairs. The B+ tree operations would be at least somewhat easier. Thus it is helpful to 

think of B+ trees as "by nature" including key[0] in the internal nodes, and that removing 

key[0] is an efficiency tweak that adds some complexity. 

Each leaf node block is laid out as indicated in Figure 5-9. The layout of an 

internal node is the same except that there is no space for the 0th key and the value type 

is different. The keys are presumed kept in order. The array of key pairs in a node can 

thus be searched using a binary search. 
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5.3.3.2 bptIndex 

The bptIndex is an implementation of a traditional B+ tree mechanism. All of the 

normal operations for traversing a tree and rebalancing the tree are the traditional 

mechanisms presented in the literature [Date04, elma03, Rals03, Rama03, Silb96, 

Tuck04]. The only modifications to the source code and data structures are those 

described above in section 5.3.3.1 and the addition of the buffer manager extensions for 

caching. 

 

5.3.3.3 ALVDataFile 

The ALVDataFile is a set of C++ classes designed to manage the myTable.alvi 

file (a disk file that stores the version index). It stores the data for the nodes blocks (block 

size is adjustable) and provides access to header information (header size is adjustable), 

free space, and statistical information about the data file. It also supports clustered block 

access for use in buffer management algorithms. Unlike the ALVDataFile 

implementation in the clustered version store, the version index does not use block 

extents. Rather, a node is stored as a complete (single) block on disk.  
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Figure 5-9: Version Indexing File Format 
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This permits the nodes to be saved on disk in any order, enabling the host 

operating system to manage space on the physical media. Otherwise, the data file 

performs in the same manner as that of the clustered version store. Figure 5-9 depicts the 

layout, data structures, and header information details for a typical version index file 

(myTable.alvi). 

 

5.3.4 Buffering and Transactions 

The version index uses the same buffer management strategy as the clustered 

version store. To revisit the argument, the buffer is designed to fetch blocks from disk 

into memory saving them in memory, only when there is either a concurrent request for 

access (read or write) or a transaction in progress. The argument is that the virtual 

memory and file systems of the host operating system provide adequate support for 

buffering at the file level. Thus any sort of prefetching or caching of the blocks on disk is 

not necessary [Smit78] and the cache mechanism showed little to no gain in performance 

when implemented.  

 

5.3.4.1 The role of the ALV Buffer Manager 

The ALV buffer manager performs the same role for the index store as it does for 

the physical store. In fact, it performs exactly like that of the physical store 

implementation except that the concept of block extents is not used and the root node 

(page) of the tree is always kept in memory [Baye72]. This implementation of the ALV 

buffer manager is called the bptBlockMgr. 
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5.3.4.2 Transactions in ALV 

The implementation of concurrency and transactions is a serious programming 

challenge [Hugh97]. Concurrency and transaction processing are deeply related. In order 

to support transactions, one must also support concurrency. By putting support for 

concurrency into the system and having a suitable buffering strategy, the ground work for 

supporting transactions is laid. The principal goal of database concurrency is to ensure 

that the concurrent execution of the transaction does not result in the loss of any 

consistency or database integrity [Silb96]. 

Consider this question: If there are two threads executing transactions and they 

each modify the same table (perhaps even the same records), and if one rolls back but the 

other commits what is the state of the database tables? What gets rolled back and what 

gets committed? The answers to these questions are the solution to detecting and 

preventing deadlock and how to resolve conditions where transactions are interleaved. 

These are important considerations for designing and implementing a database 

transaction mechanism. 

A transaction log is a common mechanism to store all operations performed on a 

database file. Transaction systems and log files must match the physical file definition. It 

would be difficult to create a generic logging and transaction mechanism for any physical 

layout. Thus, logging systems are typically built to accommodate a particular physical 

store. 

What is stored when the log is updated? If you store only the operations 

(canonical or verbose), interleaved operations cannot be selectively rolled back. 
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However, if you store the operations and the blocks that are affected (before image), 

annotating them by a sequence number that corresponds to the transaction, it is possible 

to rollback interleaved operations. However, the database system must be preempted to 

accomplish this (all files involved are locked).  

Another area of concern is what happens if a transaction is begun but no commit 

or rollback occurs? Should the system behavior default to always commit or always 

rollback or commit only if there are no errors? 

It is important to discuss transactions in the ALV system because of the effect 

they have on the version index and its execution. As described above, the version index 

has been designed to support concurrency and transactions natively with the data 

structure and its methods rather than in an additional layer or mechanism.  

Transactions in ALV follow the theory for database transaction integrity and 

therefore exhibit the ACID properties: atomicity, consistency, isolation, and durability 

[Date04, Elma03, Rals03, Rama03, Silb96, Tuck04]. There are three operations for 

transaction processing: BEGIN_TRANSACTION, COMMIT, and ROLLBACK. Each is 

explained below: 

 

 BEGIN_TRANSACTION – this operation signals the database system to 

checkpoint the current set of operations and begin recording all of the changes 

to the database system. 

 COMMIT – this operation permits all of the operations in a transaction to be 

permanently written to the database files (physical). 
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 ROLLBACK – this operation tells the database system to discard all of the 

changes made to the database files since the previous 

BEGIN_TRANSACTION operation. 

 

Transactions are supported using mechanisms designed to use the data structure 

features of the version index and the clustered version store. The choice to use a two-

phase locking strategy was necessary to follow the general practice for implementing a 

transaction manager[Rals03]. This mechanism was built using two classes, the 

TransactionManager class and the TransactionalBlockManager class.  

The ALVManager contains a single instance (singleton) of the 

TransactionManager class, which has methods BeginTransaction(key) and 

EndTransaction(key). Key is an identifier for the transaction, and in this case we are 

using the thread pointer (THD) from the MySQL executor for the session. 

BeginTransaction and EndTransaction are called from the MySQL functions begin_trans 

and end_trans in sql_parse code. 

The TransactionalBlockManager is essentially a transaction-conscious proxy for 

bptBlockMgr. TransactionalBlockManagers are associated with the TransactionManager 

and report their construction/destruction to that manager. All places in ALVRecordFile, 

and bptIndex which involve locking, unlocking, changing, or deleting blocks call the 

equivalent method on TransactionalBlockManager, adding the transaction key to the 

argument list. Accordingly, the methods of ALVRecordFile and bptIndex have the 

transaction key as an argument. The TransactionalBlockManager passes through and 
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caches lock requests while buffering unlocks, changes, and deletions until the end of the 

transaction. 

When an end of transaction command is issued for a key, the TransactionManager 

subsequently calls EndTransaction on each TransactionalBlockManager, which 

appropriately saves or discards the altered blocks depending on if the transaction is being 

committed or rolled back. 

By using a transaction key and associating operations with it, the ALV transaction 

mechanism permits multiple transactions to execute in parallel and not affect one another 

should one be rolled back and the others committed. Caching all of the changes to the 

data (and index) enhances this ability by providing a reference point for each change. In 

this manner, queries on the ALV system support concurrency and transactions. 

 

5.3.4.3 Deadlock Prevention 

One problem that had to be solved when dealing with concurrency and 

transactions is how to prevent deadlocks. A deadlock occurs when two or more processes 

are competing for the resources that are held by the other process waiting on the first (a 

circular wait occurs). Examples include race conditions and mutual exclusion of locks 

(process A has an exclusive lock on an object and is requesting an exclusive lock held by 

process B which, in turn is requesting an exclusive lock on the object held by process A). 

The bptTree mechanisms were defined using an ordering on the blocks of the 

index file as follows: higher-level nodes (closer to the root) are always less than lower-

level nodes, and nodes on the same level are ordered left-to-right (in agreement with key 
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values). The header block is considered to be greater than all other blocks. Deadlock is 

prevented by requiring that locked blocks must be acquired in increasing order, i.e. if 

block B is requested and block A is already held with some kind of lock, then  A must 

be less than B. 

 

5.4 Analysis 

This section describes the analysis performed while implementing and 

experimenting with the version index and its individual components. All of the 

experiments were run on a 3.0Ghz AMD processor-based system running Windows XP 

Professional. The disk subsystem used was a hardware raid system incorporating two S-

ATA physical devices in a mirrored arrangement. The experiments were repeated using a 

conventional IDE-133 device with little or no variation in the measurements

24

. 

 

5.4.1 Index Experiments 

Experiments conducted on the version index itself would not be very interesting 

and would only demonstrate how the index performs in a database system. The indexing 

experiments would not show the benefits and performance improvements over sequential 

access. The experiments conducted were designed to be run with the version index fully 

integrated into the database system. The experiment involved accessing data from the 

clustered version store both using the index and without using the index. A similar 

                                                

24

 This is expected because the differences in the physical devices and their access protocols are very 

similar. Although th roughput on the S-ATA devices theoretically could be faster, the addition of the raid 

subsystem nullifies any advantage over IDE -133 devices. 
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experiment was conducted showing the performance of two native MySQL physical 

stores and their indexing mechanisms. Each of these experiments were conducted using a 

small (599 rows), medium (32561 rows) and large (201053 rows) data set. A complete 

description of these tables and their composition can be found in Appendix A.  

Table 5-1 lists the data for the results of the experiment. The three datasets used 

(small, medium, large) are grouped in rows depicting access times without and with using 

the index mechanism. Included is data from the experiment in Chapter 4 used as a 

comparison of the improvement indexing provides over a table scan. Column 2 contains 

the access time for the ALV data store, column 3 and 4 contain access times for the 

MyISAM and InnoDB data stores respectfully. The values presented show that the ALV 

data store access times using the version index exceed that of both MyISAM and 

InnoDB. Figures 5-10 through 5-12 depict graphs comparing the performance of the 

indexing experiments and are graphical representations of the comparison of access times 

for the ALV data store versus the MyISAM data store. 
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(small) 

Customer   

Time (seconds) 

ALV MyISAM InnoDB 

(No Index):  

0.0152842700 0.0020339740 0.0011315960 

(with Index):  

0.0000752749 0.0001261892 0.0007118642 

% Improvement:  

20304.60% 1611.84% 158.96% 

    

(medium) 

Adults   

 

ALV MyISAM InnoDB 

(No Index):  

0.8611705000 0.1044296000 0.0612593100 

(with Index):  

0.0000839632 0.0001066895 0.0382407500 

% Improvement:  

1025652.31% 97881.80% 160.19% 

    

(large) 

ORF   

 

ALV MyISAM InnoDB 

(No Index):  

6.6346780000 0.7803103000 0.3553471000 

(with Index):  

0.0000587924 0.0001057397 0.2314253000 

% Improvement:  

11284926.50% 737953.96% 153.55% 

Table 5-1: Results of Indexing Experiments 

 

Indexing Experiment - Small Table
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Figure 5-10: Results of Indexing Experiment - Small Table 
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Indexing Experiment - Medium Table
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Figure 5-11: Results of Indexing Experiment - Medium Table 

 

Indexing Experiment - Large Table
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Figure 5-12: Results of Indexing Experiment - Large Table 

 

 

These experiments were designed to execute a simple query against each table. 

Table 5-2 lists the SQL SELECT statements for each table. Columns 4-7 indicate the 

relative position of the target rows in the file (e.g., 0.74 indicates the row is physically 
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located about 3/4

th

 into the file). The location of the target row in the file is important 

because without indexes, the system would have to perform a table scan to locate the 

target rows. In this experiment, the data was placed in various positions and near the end 

of the file to demonstrate the best performance gain of using indexes to access the data 

directly.  

 

Table Type Sample SQL Statement Location in file for each result (%) 

Customer ALV 

select alv * from 

customer_alv where 

customer_alv.alv_key 

= 350; 

0.040067 0.744574 0.93823 .966102 

 MyISAM 

select SQL_NO_CACHE 

* from customer 

where 

customer.alv_key = 

350; 

    

 InnoDB 

select SQL_NO_CACHE 

* from customer_i 

where 

customer_i.alv_key = 

350; 

    

Adults ALV 

select alv * from 

adults_alv where 

adults_alv.alv_key = 

7185; 

0.204969 0.999816   

 MyISAM 

select SQL_NO_CACHE 

* from adults where 

adults.alv_key = 

7185; 

    

 InnoDB 

select SQL_NO_CACHE 

* from adults_i 

where 

adults_i.alv_key = 

7185; 

    

ORF ALV 

select alv * from 

orf_alv where 

orf_alv.alv_key = 

143434; 

0.997916    

 MyISAM 

select SQL_NO_CACHE 

* from orf where 

orf.alv_key = 

143434; 
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Table Type Sample SQL Statement Location in file for each result (%) 

 InnoDB 

select SQL_NO_CACHE 

* from orf_i where 

orf_i.alv_key = 

143434; 

    

Table 5-2: Description of Data for Indexing Experiments 

 

The MySQL SQL_NO_CACHE option in the SELECT statement was necessary 

to discount the query cache mechanism inherent in MySQL in order to present a fair 

comparison. As discussed previously, the ALV mechanisms would benefit from being 

fitted to use the MySQL query cache mechanism. 

Clearly, the addition of the version index increased performance of the query 

dramatically for all datasets, with the greatest benefit gained for the large data set. Also, 

the version index and the clustered version store together performed better than the native 

MySQL mechanisms.  

The reason for this increase in performance over the MySQL mechanisms is the 

design of the clustered version store. Combined with a fast index, accessing a set of 

attribute versions for a given key is simplified to reading a single block into memory and 

dereferencing the attribute chain (rows) for the result. The MySQL files required 

accessing several blocks from the physical store in order to retrieve all of the results.  

Therefore, the ALV clustered version store and associated index mechanisms provide 

better performance for retrieval of data that has a high degree of association. Thus, a 

clustered version store and index are technologies designed to support versioned data 

while providing high performance access comparable to or better than traditional 

database access mechanisms. 
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5.4.2 Real World Performance 

This section presents observations of the ALV system running in a real 

environment using live data constructed from actual data sources. Although the 

disclosure of the actual data is not possible, the results of the experiments are meaningful 

and demonstrate significant milestones in the integration of the ALV system into a world-

class database system. 

While using the system without indexing for all but very large data sets, the 

version queries ran in short enough times as to be unnoticeable. In fact, it wasn’t until the 

data sets grew to over 100 host entities and approximately 10 attribute versions that any 

noticeable or measurable delay was encountered. By adding the version index 

mechanism, these delays were eliminated and performance was enhanced beyond the 

current capabilities of the mechanisms in MySQL.  

 

5.5 Conclusion 

The clustered version store is the cornerstone of the ALV system. However, it is 

incomplete without a mechanism to index and access the data in an efficient (timely) 

manner. The integration of the version index into the ALV system is therefore imperative 

in order to provide the speed necessary for a system to be considered for production use. 

By demonstrating the ability to store attribute versions in a dedicated, specialized 

physical storage mechanism and accessing the data using rapid index resolution, this 

work has demonstrated the version index mechanism is reliable and performs well. The 

experiments and real world experience of using the ALV system with the version 
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indexing mechanisms demonstrate that a fast indexing mechanism is required to ensure 

high speed performance of retrieval of versioned data for a versioning system and that the 

version indexing mechanism can be supported in a relational database system. 

Additionally, the creation of the B

2

+ tree and the mB

2

+ tree have shown a unique 

form of B+ tree that has buffer management, concurrency, and transaction support built 

into the data structures and algorithms. This tight integration of these features proves that 

these new variants of the venerable B+ tree are viable mechanisms for increasing the 

performance of indexing mechanisms. 

 

5.6 Future Work 

Construction of the version index from existing data is a concern that should be 

addressed in the near future. This could be an especially important performance issue if 

the database systems that implement ALV are used for high-speed data processing. Kim’s 

technology of batch-construction [Kim01] should be investigated for incorporation into 

the version index mechanisms. 

Although the version index performed well with the ALV buffering mechanism, it 

is possible the buffering mechanism may need to be altered once a sufficiently large data 

set is used. Currently, none of the large data sets tests have shown any unusual behavior 

and the index and buffer mechanism work well. Performance under these circumstances 

has been proportional to the size and complexity of the data. Further research will be 

necessary to test the cumulative effects of very large data sets on the version index and 

buffer mechanism. 
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The application of the B

2

+ tree and mB

2

+ tree in the ALV system is not as 

flexible as it could be. Additional work will be necessary to provide database 

professionals the tools necessary to create alternative indexes on any given attribute value 

or metadata attribute within an attribute version. These extra tools will give database 

professionals additional opportunities to tune the versioned database for optimal 

performance based on the need and intended use of the version system. 

While the concurrency and transaction mechanisms work well, there is no support 

for recovery. Database recovery mechanisms are designed to be able to recover the state 

of the database should the system become unstable or crash. With a recovery system such 

as a log-based journal where all operations and their outcomes are stored, all but the most 

severe of system failures could be recoverable and the state of the database rebuilt on 

restart. The ALV system does not support any form of logging or recovery. Additional 

work is necessary to implement this feature into the ALV system. By doing so, the ALV 

system will be more applicable in environments where recovery is a high priority or 

necessity. 

Lastly, the B

2

+ tree and mB

2

+ tree mechanisms described above should be 

generalized for use with more traditional physical data stores. This will ensure that the 

technology is added to the collection of many successful indexing mechanisms bearing 

the legacy of Bayer and McCreight [Baye72]. 
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Chapter Six - A Query Optimizer and Execution Engine for Versioning 

 

 

 

Abstract 

Now that there is a valid storage and retrieval mechanism that forms the basis of a 

versioning system, it is now imperative to construct a query optimizer and execution 

engine that can perform the queries in an expedient manner. This chapter will discuss an 

implementation of a query optimizer and execution engine and report its performance as 

compared to a native commercially available query optimizer and execution engine. 

 

6.1 Introduction 

To a large extent, the success of a database management system lies in the quality, 

functionality, and sophistication of its query optimizer, since optimization greatly affects 

the system's performance. A fast query optimizer and query execution engine is vital to 

the success of any database system. This chapter presents a query optimizer for fast 

processing of queries and an execution engine designed to execute queries of versioned 

data in a clustered version store within a versioning system. This system, called 

Attribute-Level Versioning (ALV), is an extension of the MySQL database management 

system. 

The following sections present the current research on query optimization and 

execution, the technology and design of a query optimizer and execution engine, an 
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analysis of the performance of the mechanisms, and a conclusion as to their success in 

meeting the goals defined above. This chapter concludes with a section outlining future 

work opportunities to improve the optimizer and execution engine. 

 

6.2 Background 

This section explains the necessity and importance of query optimization in 

relational database systems. Topics examined will include data independence, how a 

database system processes a query, and, in particular, where query optimization fits into 

the query process.  

Database systems operate in a client-server model. This model is best described in 

terms of the function of each client and the server. A client is used to interact with and 

present data from the server. The server performs all of the database processing and 

transmits results to the client. In this model, there are usually many clients per a single 

server

1

. In the context of a database system operating in this model, the database server is 

responsible for processing the queries presented by the client and returning the results 

accordingly. This has been termed query shipping [Fran96] where the query is shipped to 

the server and a payload (data) is returned. The benefits of query shipping are a reduction 

of communication time for queries and the ability to exploit server resources rather than 

using the more limited resources of the client to conduct the query. This model also 

permits a separation of how the data is stored and retrieved on the server from the way 

                                                

1

 However, current trends concerning high availability suggest a client server model where many clients 

access several servers either as distributed or replicated servers [Daco03].  
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the data is used on the client. In other words, the client-server model supports data 

independence. 

One of the principal advantages of the relational model introduced by Codd in 

1970 is data independence [Date01]. i.e. the separation of the physical implementation 

from the logical model. Codd said, “Users of large data banks must be protected from 

having to know how the data is organized in the machine … Activities of users at 

terminals and most application programs should remain unaffected when the internal 

representation of data is changed.” This separation allowed a powerful set of logical 

semantics to be developed, independent of a particular physical implementation. The goal 

of data independence (called physical data independence in Elmasri and Navathe 

[Elma03]), is that each of the logical elements is independent of all of the physical 

elements (see Table 6-1). For example, the logical layout of the data into relations 

(tables) with attributes (columns) arranged by tuples (rows) is completely independent of 

how the data is stored on the storage medium. 

 

      

      

 

 

        

 

 

Table 6-1:The Logical and Physical Models of Database Design 

 

 

One of the challenges of data independence is that database programming 

becomes a two-part process. First, there is the writing of the logical query -- describing 

Logical Model 

 Query Language 

 Relational Algebra 

 Relational Calculus 

 Relvars 

 

 

Physical Model 

 Sorting Algorithms 

 Storage Mechanisms 

 Indexing Mechanisms 

 Data Representation 

 

 



www.manaraa.com

Bell 2005 – Attribute-Level Versioning: A Relational Mechanism fo r Version Storage and Retrieval   213  

 

what the query is supposed to do. Second, there is the writing of the physical plan -- 

which shows how to implement the logical query.  

The logical query can be written, in general, in many different forms such as a 

high-level language like structured query language (SQL) [Cham81] or as an algebraic 

query tree [Tuck04].

 

For example, in the traditional relational model, a logical query can 

be described in relational calculus or relational algebra. The relational calculus is better in 

terms of focusing on what needs to be computed [Date04]. The relational algebra is more 

concrete, but still leaves out many details involved in the evaluation of a query [Date04]. 

The physical plan is a query tree [Wern01] in a physical algebra that can be 

understood by the database system's query execution engine. A query tree is a tree 

structure in which each node contains a query operator and has a number of children that 

corresponds to the arity of the operation. The query tree can be transformed via the 

optimizer into a plan for execution. This plan can be thought of as a program that the 

query execution engine can execute. 

There are several phases that a query statement goes through before it is executed; 

parsing, validation, optimization, plan generation/compilation, and execution [Grae93a]. 

Figure 6-1 depicts the query processing steps that a typical database system would 

employ

2

. Each query statement is parsed for validity and checked for correct syntax and 

for identification of the query operations. The parser then outputs the query in an 

intermediate form to allow the optimizer to form an efficient query execution plan. The 

execution engine then executes the query and the results are returned to the client. This 

                                                

2

 Some database systems combine the parsing and validation into a single step [MySQ05].  
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progression is depicted in figure 6-1 where once parsing is completed, the query is 

validated for errors, then optimized, a plan chosen and compiled, and finally the query is 

executed. 

 

 

Figure 6-1: Query Processing Steps 

 

The first step in this process is to translate the logical query from SQL into a 

query tree in logical algebra. This step is done by the parser. The next step is to translate 

the query tree in logical algebra into a physical plan. There are generally a large number 

of plans that could implement the query tree. The process of finding the best execution 

plan is called query optimization. That is, for some query execution performance measure 

(e.g. execution time), we want to find the plan with the best execution performance. The 

goal is that the plan be optimal or near optimal within the search space of the optimizer. 

The optimizer starts by copying the relational algebra query tree into its search space. 

The optimizer then expands the search space and finds the best plan. At this level of 

generality, the optimizer can be viewed as the code generation part of a query compiler 

for the SQL language. It produces code to be interpreted by the query execution engine, 

except that the optimizer's emphasis is on producing "very efficient" code. For example, 

the optimizer uses the database system's catalog to get information (e.g. number of 

tuples) about the stored relations referenced by the query, something traditional 

programming language compilers normally do not do [Much97]. Finally, the optimizer 
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copies the optimal physical plan out of its memory structure and sends it to the query 

execution engine. The query execution engine executes the plan using the relations in the 

stored database as input, and produces the table of rows that match the query criteria as 

output. 

All of this activity requires additional processing time and places a greater burden 

on the process by forcing database implementers to consider the performance of the 

query optimizer and execution engine as a factor in their overall efficiency. Ioannidis 

states this best, “Relational query optimization is an expensive process, primarily because 

the number of alternative access plans for a query grows at least exponentially with the 

number of relations participating in the query,” [Ioan97].  

One of the primary reasons for the large number of query plans is that 

optimization will be required for many different values of important run-time parameters 

whose actual values are unknown at optimization time. Database systems make certain 

assumptions about the database contents (e.g., value distribution in relation attributes), 

the physical schema (e.g., index types), the values of the system parameters (e.g., number 

of available buffers), and the values of the query constants [Ioan97]. 

 

6.2.1 Query Language 

The details of query languages are beyond the scope of this work and can be 

found in works from Date [Date04], Ramakrishnan [Rama03] and Silberschatz [Silb96]. 
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However, a basic understanding of SQL

3

 is necessary to explain how queries are 

represented and provide the view of the database system to the users.  

A query language such as SQL is a language (has a syntax and semantics) that can 

be used to represent a question posed to a database system. In fact, the use of SQL in 

database systems is considered one of the major reasons for their success [Elma03]. SQL 

provides several language groups that form a very comprehensive foundation for using 

database systems. The data definition language (DDL) is used by database professionals 

to create and manage databases. Tasks include creating and altering tables, defining 

indexes, and managing constraints

4

 [Rals03]. The data manipulation language (DML) is 

used by database professionals to query and update the data in databases. Tasks include 

adding and updating data as well as querying the data [Rals03]. These two language 

groups form the majority of commands that database systems support which database 

professionals use to manage data and database systems [Elma03]. 

SQL commands are formed using a specialized syntax. The following presents the 

syntax of a SELECT command in SQL

5

. The notation below depicts user-defined 

variables in italics and optional parameters in square brackets ([]). Note that the 

expressions are depicted as being in conjunctive normal form (CNF) where all of the 

                                                

3

 Some researchers have contended that the growth of SQL is an industry phenomenon rather than the 

expression and evolution of theory [Date90]. 

4

 Constraints put the relation in the relational model. Concepts include primary -foreign keys, data domain 

and range control, cascading deletes, etc. [Date04].  

5

 Although most database systems implement their own version of the SQL standard, most follow this 

pattern. 
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predicates are transformed into a set of predicates that form a conjunction of clauses, 

where a clause is a disjunction of literals

6

. 

 

SELECT [DISTINCT] listofcolumns   

FROM listoftables   

[WHERE expression (predicates in CNF)]   

[GROUP BY listofcolumns   

[HAVING expression]]   

[ORDER BY listofcolumns];   

 

The semantics of this command are [Ston98]:  

1. Form the cartesian product of the tables in FROM clause, forming a projection of 

only those references that appear in other clauses  

2. If a WHERE clause exists, apply all expressions for the given tables referenced  

3. If a GROUP BY clause exists, form groups in the results on attributes specified  

4. If a HAVING clause exists, apply a filter for the groups  

5. If an ORDER BY clause exists, sort the results in the manner specified 

6. If a DISTINCT keyword exists, remove the duplicate rows from the results  

The example shown above is representative of most SQL commands in that all 

have required portions of the syntax, and most also have optional sections as well as 

keyword-based modifiers. The query language extensions presented in section 6.3.4 

follow this same pattern. 

 

6.2.2 Query Optimization Strategies 

A complete detailed analysis of query optimization is beyond the scope of this 

work, this section introduces the concepts and techniques of query optimization. A 

                                                

6

 The CNF form of the predicates is created early in the optimization process.  



www.manaraa.com

Bell 2005 – Attribute-Level Versioning: A Relational Mechanism fo r Version Storage and Retrieval   218  

 

foundation of the challenges and purpose of query optimization are presented along with 

examples of query optimization strategies in existing database systems. For a more 

detailed exploration of query optimization, refer to the works of Date [Date04] and 

Lawrence [Lawr04]. Query optimization is the part of database systems that provides the 

greatest contribution to the efficiency of the database system [Das95].  

Query optimization is the part of the query compilation process that translates a 

data manipulation statement in a high-level, non-procedural language, such as SQL, into 

a more detailed, procedural sequence of operators, called a plan. Query optimizers 

usually select a plan by estimating the cost of many alternative plans and then choosing 

the least expensive amongst them [Gass93]. 

Database systems that use a plan-based approach to query optimization assume 

that there are many plans that can be used to produce any given query. While this is true, 

not all plans are equivalent in the number of resources (cost) needed to execute the query 

nor are all plans executed in the same amount of time [Ioan96]. The goal then is to 

discover the plan that has the least cost and/or runs in the least amount of time. The 

distinction of either resource usage or cost usage is a tradeoff often encountered when 

designing systems for embedded integration or running on a small platform (low resource 

availability) versus the need for higher throughput (time).  

Figure 6-2 depicts a plan-based query processing strategy. The query follows the 

path of the arrows. The SQL command is passed to the query parser where it is parsed 

and validated then translated into an internal representation, usually based on a relational 

algebra expression. The query is then passed to the query optimizer which examines all 
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of the algebraic expressions that are equivalent generating a different plan for each 

combination. The optimizer then chooses the plan with the least cost and passes the query 

to the code generator, which translates the query into an executable form, either as 

directly executable or as interpretative code. The query processor then executes the query 

returning a single row in the result set at a time. 

This is a common implementation scheme and typical of most database systems. 

However, the machines that the database system runs on have improved. It is no longer 

the case that a set of query plans have diverse execution costs. In fact, most query plans 

have been shown to execute with approximately the same cost [MySQ05]. This 

realization has led some database system implementers to adopt a query optimizer that 

focuses on optimizing the query using some well known good practices (heuristics) for 

query optimization. 
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Figure 6-2: Typical Database System Implementation 

 

 

An example of such a system is MySQL. The query optimizer in MySQL is 

designed around a select-project-join

7

 strategy. The query is broken down into an internal 

form, then optimized to execute all selects (restrictions) first, then projections, and finally 

all joins. The internal representation of queries in this model is not a query tree, but rather 

a collection of collections–based data structure [Badi02]. This strategy ensures an overall 

“good” execution plan, but does not guarantee to generate the best plan. This strategy has 

proven to work well for a vast variety of queries running in very different environments. 

The internal representation performed well enough to rival the execution speeds of the 

largest of the production database systems [MySQ05]. 

                                                

7

 The use of the select-project-join strategy in MySQL is not new. Researchers have discussed it many 

times in the literat ure and is frequently referred to as a flat query because the supporting data structures are 

typically singular structures without branches [Tuck04].  
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The purpose of query optimization is to form an execution plan for the query 

issued that minimizes the time necessary to return the correct result set. Complicating this 

goal is the fact that any given query can be represented, or created and results produced, 

using many different execution plans. These execution plans, sometimes called execution 

paths, must be generated and evaluated prior to deciding which one produces the plan 

with the least cost.  

An example of this behavior can be seen in Microsoft’s SQL Server [Bere00]. 

The query optimizer in SQL Server is designed around a classic cost-based optimizer that 

translates the query statement into a procedure that can execute efficiently and return the 

desired results. The optimizer uses information (statistics

8

) formed from past queries and 

the conditions of the data in the database to create alternative procedures that represent 

the same query command. The application of the statistics to each of the procedures is 

used to predict which of the procedures can be executed more efficiently. Once the most 

efficient procedure is chosen, execution begins and results are returned to the client. 

The greatest challenge in creating a query optimizer is to choose which 

optimization decisions to delay and how to engineer a query optimizer that efficiently 

creates dynamic plans for arbitrarily complex queries at execution [Cole94] while 

maintaining a sound concurrent execution model [Gray94]. In fact, a great deal of 

research has been conducted in order to trace and understand the behavior of query 

                                                

8

 The use of statistics in databases stems from the first cost -based optimizers. In fact, many utilities exist in 

commercial databases that permit the examination and generation of these statistics by database 

professionals to tune their databases for more efficient optimization of queries [Bane03].  
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optimizers in database systems [Date92]. Singhal and Smith [Sing97] present advances in 

this area. 

Optimization of queries can be complicated by using parameters that are unbound 

(a user predicate). In this case, query optimization may not be possible or it may not 

generate the lowest cost unless some knowledge of the predicate is obtained prior to 

execution. If very few records satisfy the predicate, even a basic index is far superior to 

the file scan. The opposite is true if many records qualify. If the selectivity is not known 

when optimization is performed, the choice among these alternative plans should be 

delayed until execution [Cole94].  

The problem of selectivity can be overcome by building optimizers that can adopt 

the predicate as an open variable and perform query plan planning by generating all 

possible query plans that are likely to occur based on historical query execution and by 

utilizing the statistics from the cost-based optimizer. The statistics include the frequency 

distribution for the predicate’s attribute.  

 

6.2.3 Internal Representation 

A query can be represented within a database system using several alternate forms 

of the original SQL command. These alternate forms exist due to redundancies in SQL, 

the equivalence of subqueries and joins under certain constraints, and logical inferences 

that can be drawn from predicates in the where clause. Having alternate forms of the 

query poses a problem for database implementers because the query optimizer must 
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choose the optimal access plan for a query regardless of how it was originally formed by 

the user [Gass93]. 

The PostqreSQL database system [Post05] uses a unique form of internal 

representation. When a query is processed and the conversion rules are applied to 

translate the SQL statement, the output is a data structure called a query tree

9

. In 

PostgreSQL, a query tree is an internal representation of an SQL statement where the 

single parts that built it are stored separately. That is, the command is stored as a value in 

the structure to indicate what kind of query it is (SELECT, INSERT, UPDATE, 

DELETE, etc.). A range table is included that lists all of the relations that are used in the 

query. Each table entry in the range table identifies a table or view and stores its internal 

name. Table entries are referenced by index rather than by name. An empty result relation 

is included to store the query results. A target list is included that is a list of expressions 

that define the result of the query. Every entry in the target list contains the expressions 

associated with the command. Lastly, a join tree is used to store the structure of the join 

clause. Additional portions of the data structure are used to store intermediate and 

optional operations such as UNION, ORDER BY, etc [Post05]. 

In many ways, the implementation of the MySQL internal query representation 

resembles the PostgreSQL data structure. The MySQL data structures mirror many 

aspects of the PostgreSQL query tree [MySQ05].  

                                                

9

 Not to be confused with a query tree as presented in literature. In this case, it isn’t really a tree at all. A 

bush, perhaps, but not a tree as defined in the body of knowledge that is Computer Science.  
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Other systems use a different form of a query tree that is more advanced than that 

of PostgreSQL and MySQL. Section 6.2.3.2 presents additional details about query trees 

and their use in forming the internal representation of SQL statements. 

 

6.2.3.1 Relational Calculus and Relational Algebra 

Relational algebra forms the basic set of operations for the relational model. 

These operations are performed against one or more relations producing a relation as a 

result

10

, which can be manipulated with the same set of operations. A set of relational 

algebra operations is called a relational algebra expression [Elma03]. Relational algebra 

is very important to database systems because it forms the formal foundation for 

manipulating the relational model. More importantly, relational algebra is the model for 

performing query optimization (operations designed to improve the efficiency of the 

relational algebra expressions) and is the basis (in part) from which query languages such 

as Structured Query Language (SQL) were created.  

As stated earlier, the query optimizer must consider all possible implementations 

(execution) for a given relational-algebra expression. It is the job of the query optimizer 

to form query execution plans that compute the same result as the given expression and 

select the one with the least cost of generating the result [Silb96]. Generation of query 

execution plans involves two steps; 1) generating expressions that are logically 

equivalent to the given expression, and 2) transforming the resulting expressions into 

equivalent statements that can be executed by the database system. Most query 

                                                

10

 In some cases a relation with no tuples. Not to be confused with a Null relation that is a relation without 

structure or tuples. 
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optimizers interleave these steps by operating on a part of the expression at a time until 

all expressions are transformed into all possible variants [Silb96].  

The first step is accomplished by means of applying equivalence rules that specify 

how to transform an expression into a logically equivalent one [Silb96]. The second step 

can be implemented using one of the following evaluation techniques; 1) cost-based 

optimization, 2) heuristic optimization, 3) semantic optimization, and 4) parametric 

optimization. Most query optimizers are implemented as cost-based optimizers, but more 

commonly they contain elements of all three techniques. 

The following query demonstrates how a single query can generate more than one 

equivalent relational-algebra expression: 

 

SELECT balance FROM account WHERE balance > 2500 

 

This query can be translated into either of the following relational-algebra 

expressions: 

 

σ balance > 2500 (π balance (account)) 

π balance (σ balance > 2500 (account)) 

 

The first query is called a projection biased expression in which the projection is 

the first operation, whereas the second is called a selection biased expression in which the 

selection is presented first. Both of these expressions will generate the same results. 

However, depending on the cost of the projection and selection, one may be of a higher 

cost to execute than the other.  

A considerable amount of research has been conducted in the area of relational 

algebra. Some researchers have devoted study to extending the relational algebra for use 
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in set-based query processing (constraints) [Belu98]. The generalized relational algebra 

presented by Belussi, et. al. provides a mechanism by which multi-dimensional queries 

can be formed and processed. Interestingly, the concept of versioning fits the descriptions 

of a constraint query. Indeed, it would be interesting work to explore the use of constraint 

databases to store and retrieve version information. 

Where relational algebra forms the basis for query optimization and query 

languages, relational calculus provides a higher degree of declarative notation for 

specifying relational queries [Elma03]. Relational calculus is best known as tuple 

calculus, where the relational calculus expressions create a new relation in terms of the 

variables that range over the tuples stored in the relation being operated on.  

Relational calculus has also been expressed in terms of columns of relations 

(domain calculus). Unlike a relational algebra expression in which the order of operations 

is defined

11

, a calculus expression has no order of operations

12

 and does not specify how 

the results are generated; rather it defines what information the result contains. This 

feature is the most distinguishing difference between relational algebra and relational 

calculus.  

Table 6-2 below presents several queries formed using both relational algebra and 

tuple relational calculus [Elma03].  

                                                

11

 The ordering of operations is the key feature that enables optimization. Without order, one cannot predict 

which pairs of operations can generate the most efficient execution plan.  

12

 Relational algebra expressions are called procedur al whereas tuple relational calculus expressions are 

called non -procedural. 
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Query Relational Algebra Tuple Relational Calculus 

Find the names of all 

employees who work on 

project number 72. 

P  σ

PNum=’72’

(PROJ) 

E  (P θ 

PNum=PNum 

WORKSON) 

S  (E θ 

SSN=SSN 

EMP) 

Result  π

LName, FName

 (S) 

Q:[m.LName, m.FName | PROJ(t) 

AND EMP(m) AND p.PNum = ‘72’ 

AND ((d) (WORKSON(d) AND 

p.PNum=d.PNum AND 

d.MSSN=m.SSN))} 

 

SELECT FName, LName 

FROM EMP JOIN WORKSON ON SSN=SSN JOIN PROJ ON PNum=PNum 

WHERE PROJ.PNum = ‘72’; 

 

Retrieve the names and 

addresses of all 

employees who work for 

the ‘Design’ department.  

D  σ

DNAME=’Design’

(DEPT) 

E  (D θ 

DNum=DnumEmp

) 

Result  π

FName, LName, Address

 (Emp)  

Q:[t.FName, t.LName, t.Address | 

EMP(t) AND (d) (DEPT(d) AND 

d.DName = ‘Design’ AND d.DNum 

=t.DNumEmp} 

 

SELECT FName, LName, Address  

FROM EMP JOIN DEPT ON DNumEmp=DNum  

WHERE DEPT.DName = ‘Design’;  

 

For every project located 

in ‘Warsaw’, list the 

project number, 

controlling department 

number, and the 

manager’s last name.  

S  σ

Loc=’Warsaw’

(PROJ) 

C  (S θ 

DNum=DNum 

DEPT) 

P  (C θ 

MSSN=SSN 

EMP) 

Result  π

PNum, DNum, LName

 (P) 

Q:[t.PNum, t.DNum, m.LName | 

PROJ(t) AND EMP(m) AND p.Loc = 

‘Warsaw’ AND ((d) (DEPT(d) AND 

p.Dnum=d.Dnum AND  

d.DNum =t.DNumEmp AND 

d.MSSN=m.SSN))} 

 

SELECT PNum, DNum, LName 

FROM PROJ JOIN DEPT ON DNum=DNum JOIN EMP ON MSSN=SSN 

WHERE PROJ.Loc = ‘Warsaw’; 

 

 

Table 6-2: Examples of Relational Algebra and Tuple Relational Algebra Expressions  

 

 

An equivalent SQL statement is included for clarity. In the examples, relational 

algebra operations are defined as follows; project (π), restrict (σ), join(θ), as well as the 

production symbol (). The tuple relational calculus uses fewer mnemonics that include 

a tuple (shown in italics), existential operators () and (), as well as typical Boolean 

operators. 



www.manaraa.com

Bell 2005 – Attribute-Level Versioning: A Relational Mechanism fo r Version Storage and Retrieval   228  

 

Relational calculus is very important because it permits the use of a mathematics 

upon which the results of queries can be proven to be correct. Relational calculus can 

therefore be used to prove the correctness of a database and thus is the formal language 

used to define relational databases. In fact, elements of tuple relational calculus are 

present in the SQL query language.  

 

Why do we have two mathematics for relational theory? Simply stated, relational 

calculus is best for stating what you want and relational algebra is best for stating how to 

accomplish it. Relational algebra and relational calculus are expressively equivalent 

[Elma03]. In fact, any expression that can be represented by one language can be 

represented by the other and vice-versa

13

. This has led to the concept of relationally 

complete, which means any query represented in relational algebra can also be 

represented in relational (tuple) calculus. 

 

6.2.3.2 Query Trees 

A query tree is a tree structure that corresponds to a query, where leaf nodes of 

the tree contain nodes that access a relation and internal nodes with zero, one or more 

children. The nodes contain the relational operators. These operators include project 

(depicted as π), restrict (depicted as σ), and join (depicted as either θ or 

14

). The edges 

of a tree represent data flow from bottom to top, i.e., from the leaves, which correspond 

                                                

13

 Also known as query equivalence [Yann95].  

14

 Strangely, few texts give explanations for the choice of symbol. Traditionally, θ represents a theta-join 

and  represents a natural j oin, but most texts interchange these concepts resulting in all joins represented 

using one or the other symbol (and sometimes both).  
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to data in the database, to the root, which is the final operator producing the query results 

[Ioan96]. Figure 6-3 depicts an example of a query tree.  

 

 

Figure 6-3: Query Tree Example

15

 

 

 

An evaluation of the query tree consists of evaluating an internal node operation 

whenever its operands are available and passing the results from evaluating the operation 

up the tree to the parent node. The evaluation terminates when the root node is evaluated 

and replaced by the tuples that form the result of the query [Elma03, Bill04].  

Data structures have been suggested to improve the way queries can be optimized 

and executed [Elma03]. This work presents such a method using a variant of the query 

tree structure. The advantages of using this mechanism versus a relational calculus 

internal representation are shown in Table 6-3.  

 

                                                

15

 Although this drawing has appeared in several places in the literature, it contains a subtle nuance of 

database theory that is often overlooked. Can you spot the often misused trait? Hint: what is the domain of 

the semester attribute? 
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Operational Requirement Query Tree Relational Calculus 

Can it be reduced? Yes. It is possible to prune 

the query tree prior to 

evaluating query plans. 

Only through application of 

algebraic operations. 

Can it support execution? Yes. The tree can be used to 

execute queries by passing 

data up the tree. 

No. Requires translation to 

another form. 

Can it support relational 

algebra expressions? 

Yes. The tree lends itself 

well to relational algebra. 

No. Requires conversion. 

Can it be implemented in 

database systems? 

Yes. Tree structures are a 

common data structure. 

Only through designs that 

model the calculus. 

Can it contain data? Yes. The tree nodes can 

contain data, operations and 

expressions. 

No. Only the literals and 

variables that form the 

expression. 

 

Table 6-3: Internal Representation Requirements 

 

 

Clearly, the query tree internal representation is superior to the more traditional 

mechanism employed in modern database systems. For example, the internal 

representation in MySQL is that of a set of classes and structures designed to contain the 

query and its elements for easy (fast) traversal. It shows no consideration for any of the 

above requirements. 

 

6.2.4 Optimizers 

This section describes the basic types of query optimizers, their uses, weaknesses, 

and application. There are four primary means of performing query optimization. These 

include 1) cost-based optimization, 2) heuristic optimization, 3) semantic optimization, 

and 4) parametric optimization. While no optimization technique can guarantee the best 

execution plan, the goal of all of these methods is to generate an efficient execution for 

the query that guarantees correct results. 
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The first query optimizers were designed for use in early database systems such as 

System R

16

 [Seli79] and INGRES [Ston76]. These optimizers were developed for a 

particular implementation of the relational model and have stood the test of time as 

illustrations for how to implement optimizers. Many of the commercially available 

database systems are based on these works. Since then, optimizers have been created for 

extensions of the relational model to include object-oriented and distributed database 

systems.  

One example is the Volcano optimizer which uses a dynamic programming 

algorithm [Seli79] to generate query plans for cost-based optimization in object-oriented 

database systems [Grae93b]. Another example is concerned with how to perform 

optimization in heterogeneous database systems (similar to distributed systems, but there 

is no commonly shared concept of organization). In these environments it is possible to 

use statistical methods for deriving optimization strategies [Spee93]. 

Another area in which the requirements for query optimization generate unique 

needs is that of memory-resident database systems. Memory resident database systems 

are designed to contain the entire system and all of the data in the computer’s secondary 

memory (disk). While most of these applications are in the area of embedded systems, 

some larger distributed systems comprised of a collection of systems use memory 

resident databases to expedite information flow. Optimization in memory resident 

database systems requires faster algorithms because the need for optimizing retrieval is 

                                                

16

 Considered by some to be the “Bible of Query Optimization” [Ston98].  
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insignificant compared to the need for processing the query itself

17

. Researchers have 

concentrated on forming specialized high-speed algorithms for these systems [Whan90]. 

All of the research into traditional and non-traditional optimization is based on the 

firmament of the System R optimizer. The System R optimizer is a cost-based optimizer 

that uses information gathered about the database and the data in the relations (statistics) 

to form cost estimates for how the query would perform. Additionally, the concept of 

arranging the internal representation of the query into different but equivalent (they 

generate the same answer) internal representations provides a mechanism to store the 

alternative forms. Each of these alternative forms is called a query plan. The plan with 

the least cost is chosen as the most efficient way to execute the query [Seli79].  

One of the key features identified in the System R work [Seli79] was the concept 

of selectivity – the prediction of results based on the evaluation of an expression that 

contained references to attributes and their values. Selectivity is central to determining in 

what order the simple expressions in a conjunctive selection should be tested. The most 

selective expression (that is, the one with the smallest selectivity) will retrieve the 

smallest number of tuples (rows). Thus, that expression should be the basis for the first 

operation in a query [Silb96]. Conjunctive selections can be thought of as the 

“intersection” conditions. Conversely, disjunctive selections are the “union” conditions. 

Order has no affect among the disjunctive conditions. 

                                                

17

 Query execution in traditional systems includes not only processing the query but also accessing the data 

from physical media. However, memory resident systems do not have the long access times associated with 

retrieval from physical media.  



www.manaraa.com

Bell 2005 – Attribute-Level Versioning: A Relational Mechanism fo r Version Storage and Retrieval   233  

 

Certain query optimizers, such as System R [Cham81a], do not process all 

possible join orders. Rather, they restrict the search to certain types of join orders that are 

known to produce more efficient execution. For example, multi-way joins might be 

ordered so that the conditions that generate the least possible results are performed first. 

Similarly, the System R optimizer considers only those join orders where the right 

operand of each join is one of the initial relations. Such join orders are called left-deep 

join orders. Left-deep join orders are particularly convenient for pipeline execution, since 

the right operand is normally a relation (versus an intermediate relation), and thus only 

one input to each join is pipelined [Silb96]. The use of pipelining is a key element of the 

ALV optimizer and execution engine. 

 

6.2.4.1 Cost-based Optimizers 

A cost-based optimizer generates a range of query-evaluation plans from the 

given query by using the equivalence rules, and chooses the one with the least cost based 

on the metrics (statistics) gathered about the relations and operations needed to execute 

the query. For a complex query, many equivalent plans are possible [Silb96]. 

The goal of cost-based optimization is to arrange the query execution and table 

access utilizing indexes and statistics gathered from past queries [Date04]. Systems such 

as Microsoft SQL Server [Micr03] and Oracle [Orac05] use cost-based optimizers. 

The portion of the database system responsible for acquiring and processing 

statistics (and many other utility functions) is called the database catalog. The catalog 

maintains statistics about the referenced relations, and the access paths available on each 
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of them. These will be used later in access path selection to select the most efficient (least 

cost) plan [Seli79]. For example, System R maintains statistics on the following [Seli79]: 

 

 For each relation store 

o The cardinality of each relation 

o The number of pages in the segment that hold tuples of each relation 

o The fraction of data pages in the segment that hold tuples of relation 

(blocking factor or fill) 

 For each index I on each relation store 

o The number of distinct keys in each index  

o The number of pages in each index  

 

These statistics come from several sources within the system. The statistics are 

created when a relation is loaded and when an index is created. They are then updated 

periodically by a user command

18

, which can be run by any user. System R does not 

update these statistics in real time because of the extra database operations and the 

locking bottleneck this would create at the system catalogs. Dynamic updating of 

statistics would tend to serialize accesses that modify the relation contents and thus limit 

the ability of the system to process simultaneous queries in a multi-user environment 

[Seli79]. 

                                                

18

 This practice is still in use today by most commercial database systems [Micr03, Orac05]. 
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The use of statistics in cost-based optimization is not very complex [Seli79]. Most 

database professionals interviewed seem to think the gathering and application of 

statistics to be a complex and vital element of query optimization. Whereas it is true that 

cost-based query optimization and even hybrid optimization schemes use statistics for 

cost and/or ranking, they are neither complex nor critical. Take for instance the concept 

of evenly distributed values among attributes. This concept alone is proof of the fuzzy 

nature of the application of statistics. Statistical calculations are largely categorical in 

nature and not designed to generate a precise value. They merely assist in determining 

whether one query execution plan is generally more costly than another [Rama03]. 

Frequency distribution of attribute values is a common method for predicting the 

size of query results. By forming a distribution of possible (or actual

19

) values of an 

attribute, the database system can use the distribution to calculate a cost for a given query 

plan by predicting the number of tuples (rows) that the plan must process. Practical 

DBMSs, however, deal with frequency distributions of individual attributes only, because 

considering all possible combinations of attributes is very expensive. This essentially 

corresponds to what is known as the attribute value independence assumption, and 

although rarely true, it is adopted by all current DBMSs [Date04].  

Gathering the distribution data requires either constant updating of the statistics or 

predictive analysis of the data. Another tactic is the use of uniform distributions where 

the distribution of the attribute values is assumed to be equal for all distinct values. For 

example, given 5000 tuples and a possible 50 values for a given attribute, the uniform 

                                                

19

 The accumulation of statistics real -time is called piggy back statistic generation [Zhu98].  



www.manaraa.com

Bell 2005 – Attribute-Level Versioning: A Relational Mechanism fo r Version Storage and Retrieval   236  

 

distribution assumes each value is represented 100 times [Date04]. This is rarely the case 

and is often incorrect [Silb96]. However, given the absence of any statistics, it is still a 

reasonable approximation of reality in many cases [Silb96]. 

The memory requirements and running time of dynamic programming grow 

exponentially with query size (i.e., number of joins) in the worst case since all viable 

partial plans generated in each step must be stored to be used in the next one. In fact, 

many modern systems place a limit on the size of queries that can be submitted (usually 

around fifteen joins), because for larger queries the optimizer crashes due to very high 

memory requirements. Nevertheless, most queries seen in practice involve less than ten 

joins, and the algorithm has proved to be very effective in such contexts. It is considered 

the standard in query optimization search strategies. 

The relevant statistics gathered about relations for use in cost-based optimizers 

include [Silb96]: 

 

 n

r

 the number of tuples in the relation r 

 b

r

 the number of blocks containing tuples in the relation r 

 s

r

 the size of a tuple of relation r in bytes 

 f

r

 the blocking factor of relation r  

 V(A, r) the number of distinct values that appear in relation r for attribute A. This 

value is the same as the size Π

A

(r). If A is a key for relation r, V(A, r) is n

r

. 

 SC(A, r) the selection cardinality of attribute A of relation r. Given a relation r 

and an attribute A of the relation, SC(A, r) is the average number of records that 
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satisfy an equality condition on attribute A, given that at least one record satisfies 

the equality condition. For a key attribute, SC(A, r) is 1; for non key attribute, we 

estimate that the V(A, r) distinct values are distributed evenly among the tuples, 

yielding SC(A, r) = (n

r

 / V(A, r)). 

 f

i

 is the fan-out of internal nodes of index i  

 HT

i

 is the height of the B+ Tree for index i 

 LB

i

 is the number of lowest-level index blocs in index I – the number of blocks at 

the leaf level of the index. 

 

The cost of writing the final result of an operation back to disk is ignored. 

Whatever the query-evaluation plan used, this cost does not change; thus not including it 

in the calculations does not affect the choice of the plan [Silb96]. 

Most database systems today use a form of dynamic programming to generate all 

possible query plans. While dynamic programming offers good performance for cost-

optimization, it is a complex algorithm that can require more resources for the more 

complex queries. While most database systems do not encounter these types of queries, 

researchers in the areas of distributed database systems and high performance computing 

have explored alternatives and variants to dynamic programming techniques. The recent 

research by Kossmann and Stocker [Koss00] shows that we are beginning to see the 

limits of traditional approaches to query optimization. What are needed are more efficient 

optimization techniques that generate efficient execution plans that follow good practices 

rather than exhaustive exploration. In other words, we need optimizers that perform well 
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in a variety of general environments as well as optimizers that perform well in unique 

database environments. 

 

6.2.4.2 Heuristic Optimizers 

The goal of heuristic optimization is to apply rules that ensure “good” practices 

for query execution [Rama03]. Systems that use heuristic optimizers

20

 include INGRES 

[Ston76] and various academic variants. 

Heuristic optimizers use rules concerning how to shape the query into the most 

optimal form prior to choosing alternative implementations. The application of heuristics, 

or rules, can eliminate queries that are likely to be inefficient [Ioan97]. Using heuristics 

as a basis to form the query plan ensures that the query plan is most likely (but not 

always) optimized prior to evaluation.  

 

Such heuristics are: 

 Perform selection operations as early as possible. It is usually better to perform 

selections earlier than projections because they reduce the number of tuples to be 

sent up the tree. 

 Perform projections early. 

 Determine which selection operations and join operations produce the smallest 

result set and use those first (left-most-deep). 

 Replace cartesian products with join operations. 

                                                

20

 Most systems typically use heuristic optimization as a means of avoiding the really bad plans rather than 

as a primary means of optimization.  
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 Deconstruct and move as far down as possible lists of projection attributes. 

 Identify subtrees whose operations can be pipelined. 

 

Heuristic optimizers are not new technologies. Researchers have created rules-

based optimizers for various specialized purposes. One example is the Prairie rule-based 

query optimizer [Das95]. This rule-based optimizer permits the creation of rules based on 

a given language notation. Queries are processed using the rules to govern how the 

optimizer performs. In this case, the Prairie optimizer is primarily a cost-based optimizer 

that uses rules (heuristics) to tune the optimizer. 

Aside from examples like Prairie and early primitives such as INGRES, no 

commercial database systems implement a purely heuristic optimizer. For those that do 

have a heuristic or rule-based optimization step it is usually implemented as an addition 

to or as a pre-processor to a classic cost-based optimizer [Das95] or as a pre- post-

processing step in the optimization strategy [MySQ05]. 

 

6.2.4.3 Semantic Optimizers 

The goal of semantic optimization is to form query execution plans that use the 

semantics, or topography, of the database and the relationships and indexes within to 

form queries that ensure the best practice available for executing a query in the given 

database. Chakravarthy explains this best, saying that the semantic query optimization 

uses knowledge of the schema (e.g., integrity constraints) for transforming a query into a 

form that may be answered more efficiently than the original version. Chakravarthy 
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shows how “…semantic query optimization techniques can be extended to databases that 

support recursion and integrity constraints that contain disjunction, negation, and 

recursion,” [Chak90]. 

Although not yet implemented in commercial database systems as the primary 

optimization technique, semantic optimization is currently the focus of considerable 

research. Semantic optimization operates on the premise that the optimizer has a basic 

understanding of the actual database schema. When a query is submitted, the optimizer 

uses its knowledge of system constraints to simplify or to ignore a particular query if it is 

guaranteed to return an empty result set. This technique holds great promise for providing 

even more improvements to query processing efficiency in future relational database 

systems. 

 

6.2.4.4 Parametric Optimizers 

Ioannidis, in his work on parametric query optimization, describes a query 

optimization method that combines the application of heuristic methods with cost-based 

optimization. The resulting query optimizer provides a means to produce a smaller set of 

effective query plans from which cost can be estimated, and thus the lowest cost plan of 

the set can be executed [Ioan97]. Query plan generation is created using a random 

algorithm, called sipR. This permits systems that utilize parametric query optimization to 

choose query plans that can include the uncertainty of parameter changes (such as buffer 

sizes) to choose optimal plans either formed on the fly or from storage [Ioan97]. 
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It is interesting to note that in his work, Ioannidis suggests that the use of dynamic 

programming algorithms may not be needed and thus the overhead in using these 

techniques avoided. Furthermore, he found that database systems that use heuristics to 

prune or shape the query prior to applying dynamic programming algorithms for query 

optimization are usually an enhanced and version of the original algorithm of System R. 

Ioannidis showed that for small queries (approximately up to ten joins), dynamic 

programming is superior to randomized algorithms, whereas for large queries the 

opposite holds [Cole94, Ioan97]. 

 

6.2.5 Query Execution 

There are many methods that database systems can use to execute queries. Most 

database systems use either an iterative or interpretative execution strategy [Rama03].  

Iterative methods provide ways of producing a sequence of calls available for 

processing discrete operations (e.g., join, project, etc.), but are not designed to 

incorporate the features of the internal representation. Translation of queries into iterative 

methods uses techniques of functional programming and program transformation. There 

are several algorithms that generate iterative programs from algebra-based query 

specifications. One example translates query specifications into recursive programs 

which are simplified by sets of transformation rules before the algorithm generates an 

execution plan. Another algorithm uses a two-level translation. The first level uses a 

smaller set of transformation rules to simplify the internal representation and the second 

level applies functional transformations prior to generating the execution plan [Frey89]. 
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The implementation of this mechanism [Frey86] creates a set of defined compiled 

functional primitives, formed using a high-level language, that are then linked together 

via a call stack or procedural call sequence. When a query execution plan is created and 

selected for execution, a compiler (usually the same one used to create the database 

system) is used to compile the procedural calls into a binary executable. Due to the high 

cost of the iterative method, compiled execution plans are typically stored for reuse for 

similar or identical queries [Date04, Frey86]. 

Interpretative methods on the other hand form query execution using existing 

compiled abstractions of basic operations. The query execution plan chosen is 

reconstructed as a queue of method calls that are each taken off the queue, processed, and 

the results placed in memory for use with the next or subsequent calls. Implementation of 

this strategy is often called “lazy evaluation” because the set of available compiled 

methods is not optimized for best performance, rather they are optimized for generality 

[Frey86]. 

Query processing and execution in MySQL is of the interpretive variety. It is 

implemented within the threaded implementation architecture whereby each query is 

given its own thread of execution. Figure 6-4 depicts a block diagram that describes the 

MySQL query processing methodology.  
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Figure 6-4: The MySQL Query Processing Methodology

21

 

 

 

When a client issues a query, a new thread is created and the SQL statement is 

forwarded to the parser for syntactic validation (or rejection due to errors). The MySQL 

parser is implemented using a large lex-yacc

22

 script [John95, Lesk90] that is compiled 

with Bison [Donn02]. The parser constructs a query structure used to represent the query 

statement (SQL) in memory as a data structure that can be used to execute the query. 

Once the query structure is created, control passes to the query processor which performs 

checks such as checking tables and security access. Once the required access is granted 

and the tables are opened (and locked if the query is an update), control is passed to 

individual methods that execute the basic query operations such as select, restrict, and 

project. Optimization is applied to the data structure by ordering the lists of tables and 

operations to form a more efficient query based on common practices. This form of 

                                                

21

 Drawing borrowed from the MySQL Query Optimizer presentation by Widenius [Wide03].  

22

 Lex stands for “lexical analyzer generator” and is used as a parser to identify tokens and literals as well 

as syntax of a language. Yacc stands for “yet another compiler compile r” and is used to identify and act on 

the semantic definitions of the language. The use of these tools together with Bison (a yacc compiler) 

provides a rich mechanism of creating subsystems that can parser and process language commands. Indeed, 

that is exactly how MySQL uses these technologies. 
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optimization is called a select-project-join query processor. The results of the query 

operations are returned to the client using established communication protocols and 

access methods [Badi02]. 

One area that is often confusing is the concept of what “compiled” means. In 

Frey’s work [Frey86], a compiled query is an actual compilation of an iterative query 

execution plan, but in Date’s work [Date04], a compiled query is simply one that has 

been optimized and stored for future execution

23

. As a result, one must take care when 

considering a compiled query. In this work, the use of the word “compiled” is avoided 

because the query optimizer and execution engine do not store the query execution plan 

for later reuse nor does the query execution require any compilation or assembly to work 

[Frey86]. 

Another area of interest is called extensible query optimization. Extensible query 

optimization is the application of alternative methods or a repertory of alternative 

strategies for performing query optimization. In many ways, systems that include 

extensible query optimization techniques employ multiple query optimization strategies 

[Lohm88]. However, this term is dated and generally implies that the database system 

uses a modularized or tunable mechanism to ensure that query optimization is performed 

using the most appropriate techniques in a given database. In contrast, the ALV query 

optimizer uses a heuristic optimizer as a primary method followed by the application of 

available indexed access paths as a secondary optimization step. 

 

                                                

23

 The concept of a stored procedure fits this second category – it is compiled (optimized) for execution at a 

later date and can be run many times on data that meets its input parameters.  
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6.3 ALV Query Optimizer and Execution Engine 

The ability to translate queries into an executable form involves the application of 

query optimization to ensure an efficient execution plan and a fast execution engine. 

Imperative to the success of these technologies is an effective internal representation. 

This section describes the technology created to implement these technologies and the 

problems encountered along the way. 

The ALV query optimizer does not resemble the SELECT-PROJECT-JOIN 

optimizer of MySQL (described above). It is a heuristic query optimizer designed to 

operate on a specialized internal structure that is a variation of a query tree. The query 

tree is a tree structure designed to contain the operations of a query at the nodes and the 

relations at the leaves [Tuck04]. The choice of a tree structure enables fast traversal of the 

structure using well known tree traversal algorithms [Baas88, Knut97]. Furthermore, it 

also permits execution of the query also by traversing the tree from the bottom-up, 

producing results via the root node. The following sections describe the ALV query tree, 

optimizer, and execution engine in detail. 

 

6.3.1 Technology Descriptions 

The ALV query optimizer and execution engine are implemented as classes 

within the C++ program. Starting from the lowest level, a class was created to model a 

query tree that implements the tree structure. The execution engine is implemented as a 

class that consumes the query tree and manipulates it in place without transformation. 
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These last two features are paramount to the efficient execution of the query and add 

considerable benefit to the effectiveness of the versioning system. 

 

6.3.1.1 ALV Query Tree 

The ALV query tree is a tree data structure that uses a node structure that contains 

all of the parameters necessary to represent the following operations: 

 

 Restriction – provides the ability to include results that match an expression of the 

attributes  

 Projection – provides ability to select attributes to include in result set 

 Join – provides the ability to combine two or more relations to form a composite 

set of attributes in the result set 

 Sort (order by) – provides ability to order the result set 

 Distinct – provides the ability to reduce the result set to unique tuples 

 

Projection, Restriction, and Join are the basic operations. Sort and distinct are 

provided as additional utility operations that assist in the formulation of a complete query 

tree (all possible operations represented as nodes). Join operations can have join 

conditions (theta joins) or no conditions (equijoins). The join operation is subdivided into 

the following operations: 

 

 Inner – the join of two relations returning tuples where there is a match 
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 Outer (left, right, full) – return all rows from at least one of the tables or views 

mentioned in the FROM clause, as long as those rows meet any WHERE search 

conditions. All rows are retrieved from the left table referenced with a left outer 

join, and all rows from the right table referenced in a right outer join. All rows 

from both tables are returned in a full outer join. Values for attributes of non-

matching rows are returned as null values. 

 Rightouter – the join of two relations returning tuples where there is a match plus 

all tuples from the relation specified to the right leaving non-matching attributes 

specified from the other relation empty (null). 

 Fullouter – the join of two relations returning all tuples from both relations 

leaving non-matching attributes specified from the other relation empty (null). 

 Crossproduct – the join of two relations mapping each tuple from the first relation 

to all tuples from the other relation 

 Union – the set operation where only matches from two relations with the same 

schema are returned 

 Intersect – the set operation where only the non-matches from two relations with 

the same schema are returned 

 

While the ALV query tree provides the union and intersect operations, the 

MySQL parser does not currently support such operations. Further modification of the 

MySQL parser is necessary to implement these operations. 
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The ALV query tree class also contains the methods used in the ALV query 

optimizer. That is, there exist HOptimization() and COptimization() methods that 

implement the heuristic and cost optimization processes respectively. 

 

6.3.1.2 ALV Query Optimizer 

When designing the ALV execution engine, it became apparent that little research 

has been done on the creation of an execution engine that complements an internal 

structure while remaining an abstraction. Thus, the ALV optimizer is implemented as part 

of the ALV query tree. The optimizer is implemented as a two-pass operation where the 

first operation rearranges the tree for execution using a heuristic algorithm. The second 

pass walks the tree, changing the access method for nodes that have relations with 

indexes available on the attributes being operated on.  

The heuristic optimization process uses a set of rules that have been defined to 

guarantee “good” execution plans (see section 6.3.1.3 below). The following summarizes 

the algorithm used to implement the HOptimization() method. 

 

1. SplitRestrictWithJoin() – Find all join nodes that are also restrictions (join nodes 

that have a where clause) and split into a join with restriction(s) as children. 

2. SplitProjectWithJoin() – Find all join nodes that are also projections (join nodes 

that have an attribute list) and split into a join with projection(s) as children. 

3. SplitRestrictWithProject() – Find all restrict nodes that have an attribute list and 

split into a project with a restrict as the left child. 
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4. FindRestriction() – Find a node with restrictions and push down the tree using a 

recursive call. Continue until you get the same node twice. This means that the 

node cannot be pushed down any further. 

5. FindProjection() – Find a node with projections and push down the tree using a 

recursive call. Continue until you get the same node twice. This means that the 

node cannot be pushed down any further. 

6. FindNaturalJoin() – Remove all cross products. 

7. PruneTree() – Prune the tree of "blank" nodes. Blank nodes are; 1) projections 

without attributes that have at least 1 child, 2) restrictions without expressions, but 

not having two children. 

8. RemoveDistinct() – Lastly, check to see if there exists a DISTINCT option. If so, 

create a new node that is a DISTINCT operation. 

 

The default access method for all relations is a file scan. The cost optimization 

process walks the query tree looking for leaf nodes and examines the relations specified. 

If an index is available for any of the attributes in the expressions or projections, the 

index is used as the access method. 

Together, these two methods (the storage of the query as a qquery tree and storing 

the query operations in the nodes) enable manipulation of the query tree structure to form 

a query plan that can be executed directly. The most important concept is the omission of 

generating alternative query plans. By ensuring good practices (rules) are used to form 

the query, only one pass is necessary and therefore the heuristic optimization process, 
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combined with the index access method application, provides an efficient query 

optimization process. 

 

6.3.1.3 Rules for Query Tree Optimizations 

In the pursuit of generating a heuristic optimizer based on a query tree, it became 

apparent that the optimization is only as good as its rules. Thus, the following paragraphs 

describe the rules used to create the ALV query optimizer. Although these rules are very 

basic, when applied to typical queries, the resulting execution is near-optimal with fast 

performance and accurate results. 

There are some basic strategies that were used to construct the query tree initially. 

Specifically, all executions take place in the query tree node. Selections and projections 

are processed on a branch and do not generate intermediate relations. Joins are always 

processed as an intersection of two paths. A multi-way join would be formed using a 

series of two-way joins. Lastly, the tree is left deep, or left biased, for generation of new 

nodes. 

Rule 1) Push all restrictions down the tree to leaves. Expressions are grouped 

according to their respective relations into individual query tree nodes. Although there 

are some complex expressions that cannot be reduced, most can be easily reduced to a 

single relation. By placing the restrictions at the leaves, the number of resulting tuples 

that must be passed up the tree is reduced. 

Rule 2) Place all projections at the lowest point in the tree. Projections must be 

placed in a node above restrictions and can further reduce the amount of data passed 
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through the tree by eliminating unneeded attributes from the resulting tuples. It should be 

noted that the projections may be modified to include attributes that are needed for 

operations that reside in the parentage of the projection query tree node. 

Rule 3) Place all joins at intersections of projections or restrictions of the relations 

contained in the join clause

24

. This ensures that the least amount of tuples are evaluated 

for the most expensive operation of all the join [Date04]. Intermediate query tree nodes 

may be necessary that order the resulting tuples from the child nodes. These intermediate 

nodes, called utility operations, may sort or group the tuples depending on the type of 

join. 

Rule 4) Split any nodes remaining after rules 1-3 are applied that contain a project 

and join or a restrict and join. This step is necessary because some queries specify the 

join condition in the where clause

25

 and thus can “fool” the optimizer into forming join 

nodes that have portions of the expressions that are not part of the join condition.  

An interesting counter argument to the practice of pushing selections and 

restrictions down the tree is given by Lee, Shih, and Chen [Lee01]. In their work, they 

suggest that under some conditions selections and projections are executed may be more 

costly than joins. Their argument presents a query optimizer based on graph theory that 

can more accurately predict query optimization for situations where complex selects and 

projections are present. Nevertheless, the general case is that “good” execution plans can 

be constructed for the majority of queries using the rules listed above for optimization. 

                                                

24

 May disallow the use of in dexes for the join operation. 

25

 A common technique practiced by novice SQL writers and utterly loathed by the author.  
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In summary, the ALV optimizer is designed to apply the rules above in order to 

transform the query tree into a form that ensures efficient execution

26

.  

 

6.3.2 ALV Query Execution 

Query execution in ALV is accomplished using the optimized query tree. The tree 

structure itself is used as a pipeline for processing the query. When a query is executed, a 

GetNext() method is issued on each of the children of the root node. Another GetNext() 

method is called on each of their children. This process continues as the tree is traversed 

to the lowest level of the tree containing a reference to a single relation. The operation for 

that node is executed for one row in the relation. Upon completion, the result of that 

operation passes up the result to the next operation in the tree. If no result is produced, 

control remains in the current node until a result is produced. As the tree is being climbed 

back to the root, the results are passed to each parent in turn until the root node is 

reached. Once the operation in the root node is complete, the resulting tuple is passed to 

the client. In this way, execution of the query appears to produce results faster because 

data (results) are shown to the client much earlier than if the query were to be executed 

for the entire set of operations before any results are given to the client. 

 

6.3.3 Class Descriptions 

Tree structures are covered extensively in many areas of research. However, few 

resources are available that examine the details of internal representations of queries in 

                                                

26

 In this case, efficient execution may not be the optimal solution.  
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database systems. The following sections describe the major code implementations and 

classes created to implement the query optimizer and execution engine. 

 

6.3.3.1 Query Transformation 

The MySQL parser was modified to identify and parse the ALV SQL commands. 

Rather than replace the parser code with code that parsed the command into the ALV 

data structure, it was decided to minimize changes to the parser. Instead the system 

creates a MySQL internal representation and converts that form into the ALV internal 

representation. Although this process adds some execution time and requires a small 

amount of extra computational work, the implementation simplified the modifications to 

the parser and provided a common mechanism to compare the ALV data structure to that 

of the MySQL data structure. 

The process of transformation

27

 begins in the MySQL parser, which identifies 

commands as being ALV commands. The system then directs control to a class named 

ALV_SQL_Parse.cpp

28

 that manages the transformation of the parsed query from the 

MySQL form to the ALV internal representation. This is accomplished by a method 

named BuildALVQueryTree in the ALV_SQL_Parse class. This method is called only 

for SELECT and EXPLAIN SELECT statements. All other statements are 

transformed from the MySQL data structure and executed inline.  

 

                                                

27

 Although many texts on the subject of query processing disagree abo ut how each process is 

differentiated, they do agree that certain distinct process steps must occur . 

28

 Named after the equivalent class in MySQL. The class is misleading because no parsing takes place in 

the class.  
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6.3.3.2 ALV QueryTree 

The heart of the ALV query optimizer is the ALV internal representation data 

structure. It is used to represent the query once the SQL command has been parsed and 

transformed.  

This structure is implemented as a tree structure, (hence the name query tree), where each 

node has 0, 1, or 2 children. Nodes with 0 children are the leaves of the tree, those with 1 

child represent internal nodes that perform unary operations on data, and those with 2 

children are join operations. The actual node structure from the source code is show in 

Figure 6-5 below. 

 

   struct QueryNode             

   [ 

    QueryNode(); 

    QueryNode(const QueryNode &o); 

    ~QueryNode(); 

    int                 NodeId; 

    int                 ParentNodeId; 

    bool                SubQuery; 

    Str                 Child; 

    QueryNodeType       NodeType; 

    TypeJoin            JoinType; 

    JoinConType         JoinCondition; 

    Expr::Expr          *where_expr; 

    Expr::Expr          *join_expr; 

    Relation            *Relations[MAXNODETABLES]; 

    float               Cost; 

    long                Size; 

    bool                PreemptPipeline; 

    Attribute           *Attributes; 

    QueryNode           *Left; 

    QueryNode           *Right; 

   }; 

 

Figure 6-5: The ALV Query Tree Node Structure 

 

Contained within the query node are variables that contain the elements for query 

operations. Each variable is described briefly below. 
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 NodeId -- the internal id number for a node 

 ParentNodeId -- the internal id for the parent node (used for insert) 

 SubQuery -- is this the start of a subquery? 

 Child -- is this a Left or Right child of the parent? 

 NodeType -- synonymous with operation type 

 JoinType -- if a join, this is the join operation 

 JoinConType -- if this is a join, this is the "on" condition 

 Expressions -- the expressions from the "where" clause for this node 

 Relations[] -- the relations for this operation (at most 2) 

 Cost -- what is the calculated cost to execute this node? 

 Size -- what is the estimated size of the result set for this node? 

 PreemptPipeline -- does the pipeline need to be halted for a sort? 

 SelIndex -- the indexes applied to this operation 

 Attributes -- the attributes for the result set of this operation 

 Left -- a pointer to the left child node 

 Right -- a pointer to the right child node 

 

Some of these variables are used to manage node organization and form the tree 

itself. Two of the most interesting are NodeID and ParentNodeID. These are used to 

establish parentage of the nodes in the tree. This is necessary as nodes can be moved up 
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and down the tree. The use of a parent node id variable avoids the need to maintain 

reverse pointers in the tree

29

.  

The SubQuery variable is used to indicate the starting node for a subquery

30

. 

Thus, the data structure can support nested queries (subqueries) without additional 

modification of the structure. The only caveat is that the algorithms for optimization are 

designed to use the subquery indicator as a stop condition for tree traversal. That is, when 

a subquery node is detected, optimization considers the subquery a separate entity. Once 

detected, the query optimization routines are re-run using the subquery node as the start 

of the next optimization. Thus any number of subqueries can be supported and 

represented as subtrees in the tree structure. This is an important feature of the query tree 

that overcomes the limitation found in many internal representations [MySQ05]. 

The Expressions variable is a pointer to an Expression class that manages a 

typical expression tree [Knut97]. While mundane in implementation, the details of the 

expression class are beyond the scope of this work. This variable is used by both 

restriction and join operations. 

The Relations array is used to contain pointers to relation classes (see Chapter 4) 

that represent the abstraction of the ALV clustered version store. The array size is 

currently set at 4. The first two positions (0 and 1) correspond to the left and right child 

respectfully. The next two positions (2 and 3) represent temporary relations such as 

                                                

29

 A practice strongly discouraged by Knu th and other algorithm gurus [Corm01, Knut97].  

30

 Subqueries were added to MySQL in 2002. Changes to the internal data structures were necessary to 

support this [Badi02] 
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reordering (sorting) and the application of indexes. The relation class permits the query 

tree to process queries against either a normal MySQL query (SQL) or an ALV query. 

The Cost and Size variables are used to gather information about the potential 

efficiency of the query. Although not used in the current implementation, these variables 

are in place for future expansion of the ALV subsystem to provide a mechanism for 

query caching.  

Attributes is a pointer to a class that abstracts the behavior of an attribute (see 

Chapter 4). It is useful in projection operations and maintaining attributes necessary for 

operations on relations (e.g., the propagation of attributes that satisfy expressions but are 

not part of the result set). 

The last variable of interest is the PreemptPipeline variable, which is used by the 

ALVExecute class to permit the execution of loops within the tree execution. Loops are 

necessary anytime an operation requires iteration through a child node. For example, a 

join that joins 2 relations on a common attribute in the absence of indexes that permit 

ordering may require iteration through one or both child nodes in order to achieve the 

correct mapping (join) operation. 

This class is also responsible for query optimization (described in 6.3.1.2 above). 

Since the query tree class provides all tree operations for manipulating the tree and since 

query optimization is also a set of tree operations, optimization was built as methods in 

the query tree class.  

Heuristic optimization is implemented via a method that implements the heuristic 

algorithm described above. Execution of this algorithm results in the relocation of tree 
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nodes into more efficient tree orders and the separation of some nodes into two or more 

others that can also be relocated to form a more optimal tree.  

Cost optimization is also supported in this class using an algorithm that walks the 

tree applying available indexes to the access methods for each leaf node (nodes that 

access the relation stores directly).  

This structure can support a wide variety of operations including restrict, project, 

join, set, and ordering (sorting). The query node structure is designed to represent each of 

these operations as a single node and can store all pertinent and required information to 

execute the operation in place. Furthermore, the explain command was implemented as a 

simple traversal of the tree, printing out the contents of each node starting at the leaves 

(see section 6.3.4.11 below). The MySQL equivalent of this operation requires much 

more computational time and is implemented with a complex set of methods.  

Thus, the query tree is an internal representation that can not only represent any 

query, but also provides a mechanism to optimize the query without changing the internal 

representation. Indeed, the tree structure itself simplifies optimization and enables the 

implementation of a heuristic optimizer by providing a means to associate query 

operations as nodes in a tree. This query tree therefore is a viable mechanism for use in 

any relational database system and can be generalized for use in a production system. 

 

6.3.3.3 ALVExecute 

The ALVExecute class is designed to work with the query tree class as the 

primary data item upon which to operate. Figure 6-6 presents a simplified sequence of the 
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major object classes and messages passed during the execution of an ALV command 

(query). 

MySQL Parser MySQL Command Processor ALV_SQL_Parse ALVExecute QueryTree

ALV::Client

CASE:ALV_SELECT_COMMAND

IdentifyCommand()

IssueQuery()

GetNext()

GetNext()

!EOF()

Optimize()

Prepare()

Result Tuples

Relation

ReadNextTuple()

 

Figure 6-6: Simplified ALV Query Execution Sequence 

 

 

A Prepare method is called at the start of query execution. The Prepare method 

walks the query tree, opening all of the relations at the leaves and establishes any 

required temporary relations. Execution is accomplished by using a while loop that 

iterates through the result set issuing a pulse to the tree starting at the root node. A pulse 

is a call to the GetNext() method that is propagated down the tree. Each node that is 
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pulsed issues a pulse to each of its children starting with the left child. In situations where 

there is no child, the relations in the query node are issued the same GetNext() method 

call (supported in the relation class).  

Once a GetNext() method returns a result (tuple – also a class that abstracts a 

tuple or row in a table), the ALVExecute class passes the tuple to a method designed to 

execute each of the query operations. A separate parameterized method is provided for 

each of the following operations; DoRestrict(), DoProject(), and DoJoin()

31

. These 

methods operate using one or two tuples as input and return either a null or a tuple. A null 

return indicates the tuple or tuples do not satisfy the current operation. For example, a 

DoRestrict() operation accepting a tuple operates using the expression class to evaluate 

the values in the tuple. If the expression evaluates to false, a null result is returned. If the 

expression evaluates to true, the same tuple is returned

32

.   

This process is repeated throughout the tree passing a single tuple up the tree to 

the root. The resulting tuple from the root is then processed by the external while loop 

and presented to the client via the existing MySQL client communication protocols. This 

form of execution is called a pipeline because of the way nodes are traversed, passing a 

single node through the tree and thus through all of the operations in the query.  

 

6.3.4 SQL

ALV

 Commands 

The following are the initial set of SQL commands supported by the ALV system. 

These commands reflect the minimal operations and parameters necessary to interact 

                                                

31

 Set operations (intersect, union) and sorting are implemented as specialized forms of  join operations. 

32

 Actually, all tuples are passed by reference so the item returned is the same pointer.  



www.manaraa.com

Bell 2005 – Attribute-Level Versioning: A Relational Mechanism fo r Version Storage and Retrieval   261  

 

with the version store to create, save, delete, and update data. The purpose of each 

command is included along with syntax and examples

33

. 

These commands do not present a departure from the SQL that is supported in 

MySQL. Furthermore, they do not violate any of the relational algebra or tuple relational 

calculus rules.  

 

6.3.4.1 Select Command 

This command is used to retrieve information from the clustered version store. It 

can be used to retrieve a range of attribute versions or a single attribute version for one or 

more records (keys) stored.  

 

SELECT [ ATTRIBUTE_LEVEL_VERSION | ALV ]  

 * |  

 attribname [, attribname] | 

 attribname.metafieldname [, attribname.metafieldname] | 

 attribname.value [, attribname.value] 

FROM tablename 

[WHERE [ALV_KEY[.keypartname] = value]  conditions] 

 

Notes 

 tablename = any valid table that is versioned. 

 attribname = any valid attribute for the attribute version table

34

. 

 metafieldname = any valid metadata field for the attribute version. 

                                                

33

 These examples use upper case to indicate keywords and italicized to indicate variables.  

34

 The name ‘attribute version table’ refers to the logical  representation of the clustered version store. That 

is, the name of the table structure exposed to the relational database that is stored on disk as the clustered 

version store. All references in this chapter attribute version store are synonymous with th e phrase clustered 

version store. 
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 conditions = any SQL92 valid combination of attribname <expression> | 

attribname.metafieldname <expression>, e.g., Field1.Value = 102, Field1 = 

102, Field1.Originated_By = ‘cbell’, Field1.Source = 90125. 

 The default data returned if the metafieldname is omitted is the value of the 

attribute version. 

 The use of ALV_KEY permits the selection of an attribute version for a given 

record key. Multipart keys are specified by ALV_KEY.keypartname. 

 

Examples 

SELECT ATTRIBUTE_LEVEL_VERSION flow FROM myTable WHERE ALV_KEY = ‘123’; 

SELECT ALV flow.class FROM myTable WHERE ALV_KEY = ‘Hammond’; 

SELECT ALV * FROM myTable WHERE ALV_KEY = ‘Tower1’; 

 

Expected response from Server (success) 

mysql> SELECT ALV * FROM myTable WHERE ALV_KEY = ‘Tower1’;  

+--------+-----------+-----------+--------+----------------+---------------+ 

| Key    | Attribute | Value     | Source | Confidence     | Reliability   |  

+--------+-----------+-----------+--------+----------------+---------------+ 

| Tower1 | Height    | 100       | 12345  | Low            | Medium        |  

| Tower1 | Latitude  | 42.297    | 12345  | Low            | Medium        |  

| Tower1 | Longitude | -83.803   | 12345  | Low            | Medium        |  

| Tower1 | Height    | 98.7      | 90125  | High           | High          |  

| Tower1 | Latitude  | 42.29736  | 90125  | High           |  High          | 

| Tower1 | Longitude | -83.80310 | 90125  | High           | High          |  

| Tower1 | Height    | 99.8      | 90125  | High           | High          |  

| Tower1 | Latitude  | 44.567    | 91125  | High           | High          |  

| Tower1 | Longitude | -103.21   | 90125  | Low            | High          |  

| Tower1 | Height    | 88.7      | 91125  | High           | Low           |  

| Tower1 | Latitude  | 47.123    | 90125  | High           | High          |  

| Tower1 | Longitude | -85.6012  | 91125  | High           | High          |  

+--------+-----------+-----------+--------+----------------+---------------+ 

12 rows in set (0.02 sec)  

 

 

6.3.4.2 Create Command 

This command is used to create the attribute version table (clustered version store) 

for a given database table. It requires the use of one or more key attributes and at least 

one attribute to be versioned. Additional metadata can be added as required. 
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CREATE [ ATTRIBUTE_LEVEL_VERSION | ALV ] tablename  

 KEY attribname datatype, 

 [, KEY attribname datatype] 

 ATTRIBUTE ( attribname datatype [INDEXED]  

 [, metafieldname datatype [INDEXED]]  ) 

 [, ATTRIBUTE ( attribname datatype   

 [, metafieldname datatype [INDEXED]]  )] 

 

Notes 

 tablename = any valid table that is versioned. 

 attribname = any valid attribute for the attribute version table. 

 metafieldname = any valid metadata field for the versioned attribute. 

 datatype = any valid data type supported by host DBMS except large text 

fields, BLOB, or mapped fields. 

 The use of the VERSION_KEY constraint permits the definition of 

constraints for duplicity of the attribute versions. 

 

Example 

CREATE ALV TABLE abc KEY xyz INTEGER  

ATTRIBUTE (a VARCHAR(10),  

      b INTEGER INDEXED, 

           c VARCHAR(100)), 

ATTRIBUTE (d VARCHAR(10),  

      e INTEGER, 

           f VARCHAR(100)); 

 

Expected response from Server (success) 

Query OK, 0 rows affected (0.00 sec) 

Attribute version table created. 

 

 

6.3.4.3 Drop Table Command 

This command is used to delete the attribute version table. This operation is 

irrevocable. 
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DROP [ ATTRIBUTE_LEVEL_VERSION | ALV ] TABLE tablename 

 

Notes 

 tablename = any valid table that is versioned. 

 

Example 

DROP ALV MyTable; 

 

Expected response from Server (success) 

Query OK, 0 rows affected (0.00 sec) 

Attribute version table dropped. 

 

 

6.3.4.4 Drop Database Command 

This command is used to delete the attribute version table. This operation is 

irrevocable. 

 

DROP [ ATTRIBUTE_LEVEL_VERSION | ALV ] TABLE tablename 

 

Notes 

 tablename = any valid table that is versioned. 

Example 

DROP ALV MyTable; 

 

Expected response from Server (success) 

Query OK, 0 rows affected (0.00 sec) 

Attribute version table dropped. 

 

 

6.3.4.5 Insert Command 

This command is used to add data to a attribute version table. It accepts a single 

attribute version and its metadata and stores the data in the table. 

 

INSERT [ ATTRIBUTE_LEVEL_VERSION | ALV ] INTO tablename ( 

attribname [, metafieldname]) 

VALUES ( attribvalue [, metafieldvalue] )  

 

Notes 



www.manaraa.com

Bell 2005 – Attribute-Level Versioning: A Relational Mechanism fo r Version Storage and Retrieval   265  

 

 tablename = any valid table that is versioned. 

 attribname = any valid attribute for the attribute version table. 

 metafieldname = any valid metadata field for the versioned attribute. 

 attribvalue = any valid value for the attribute named. 

 metafieldvalue = any valid value for the metafield named. 

Example 

INSERT ALV INTO abc (a,b,c) VALUES ('a','b','c'); 

 

Expected response from Server (success) 

Query OK, 0 rows affected (0.00 sec) 

Attribute version inserted. 

 

 

6.3.4.6 Delete Command 

This command deletes one or more attribute values from a attribute version table. 

 

DELETE [ ATTRIBUTE_LEVEL_VERSION | ALV ] FROM tablename 

[WHERE [ALV_KEY[.keypartname] = value]  conditions] 

 

Notes 

 tablename = any valid table that is versioned. 

 conditions = any SQL92 valid combination of attribname <expression> | 

attribname.metafieldname <expression>, e.g., Field1.Value = 102, Field1 = 

102, Field1.Originated_By = ‘cbell’, key = 90125. 

 keypartname = any portion of the key should the key be formed by multiple 

attributes. 

 value = literal key value. 

Example 

DELETE ALV flow FROM myTable where ALV_KEY = 90125; 
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Expected response from Server (success) 

Query OK, 0 rows affected (0.00 sec) 

Attribute version deleted. 

 

 

6.3.4.7 Update Command 

This command is used to alter the values and/or metadata field values for one or 

more attribute versions. 

 

UPDATE [ ATTRIBUTE_LEVEL_VERSION | ALV ] tablename FOR attribname SET 

 metafieldname = metafieldvalue 

 [, metafieldname = metafieldvalue] 

[WHERE [ALV_KEY[.keypartname] = value]  conditions] 

 

Notes 

 tablename = any valid table that is versioned. 

 metafieldname = any valid metadata field for the versioned attribute. 

 attribname = any valid attribute for the attribute version table. 

 attribvalue = any valid value for the attribute named. 

 metafieldvalue = any valid value for the metafield named. 

 keypartname = any portion of the key should the key be formed by multiple 

attributes. 

 conditions = any SQL92 valid combination of attribname <expression> | 

attribname.metafieldname <expression>, e.g., Field1.Value = 102, Field1 = 

102, Field1.Originated_By = ‘cbell’, key = 90125. 

Example 

UPDATE ALV abc FOR flow SET b = 1, c = 3 WHERE ALV_KEY = 90125; 

 

Expected response from Server (success) 

Query OK, 0 rows affected (0.00 sec) 
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Attribute version updated. 

 

 

6.3.4.8 Show Tables Command 

This command is used to list the tables that have attribute tables created. 

 

SHOW [ ATTRIBUTE_LEVEL_VERSION | ALV ] TABLES 

 

Example 

SHOW ALV TABLES; 

 

Expected response from Server (success) 

+--------------------+ 

| ALV_Tables_in_test | 

+--------------------+ 

| abc                | 

| def                | 

+--------------------+ 

2 rows in set (0.00 sec) 

 

 

6.3.4.9 Show Databases Command 

This command is used to list the databases that have attribute tables created. 

 

SHOW [ ATTRIBUTE_LEVEL_VERSION | ALV ] DATABASES 

 

Example 

SHOW ALV DATABASES; 

 

Expected response from Server (success) 

+---------------+ 

| ALV_Databases | 

+---------------+ 

| test          | 

+---------------+ 

1 row in set (0.00 sec) 

 

 

6.3.4.10 Explain Table Command 

This command is used to show the details of an attribute version table. It 

resembles the explain and describe commands as implemented in MySQL. 
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EXPLAIN [ ATTRIBUTE_LEVEL_VERSION | ALV ] tablename 

 

Example 

EXPLAIN ALV MyTable; 

 

Expected response from Server (success) 

mysql> EXPLAIN ALV towers; 

+----------------+-------------+------+-----+---------+-------+ 

| Field          | Type        | Null | Key | Default | Extra | 

+----------------+-------------+------+-----+---------+-------+ 

| ALV_KEY        | STRING(100) | NO   | PRI |         |       | 

| ATTR           | STRING(100) | NO   |     |         |       | 

| VALUE          | STRING(100) | YES  |     |         |       | 

| CLASSIFICATION | STRING(100) | YES  |     |         |       | 

| SOURCE         | STRING(10)  | YES  |     |         |       | 

| CONFIDENCE     | STRING(100) | YES  |     |         |       | 

| RELIABILITY    | STRING(100) | YES  |     |         |       | 

| DATE           | STRING(100) | YES  |     |         |       | 

| CUTOFFDATE     | STRING(30)  | YES  |     |         |       | 

| REMARKS        | STRING(30)  | YES  |     |         |       | 

| USEDIN         | LONG(7)     | YES  |     |         |       | 

+----------------+-------------+------+-----+---------+-------+ 

11 rows in set (0.00 sec) 

 

 

6.3.4.11 Explain Query Command 

This command is used to see the query plan that the ALV query optimizer has 

generated but does not execute the query. It prints out the results of the query tree after 

heuristic and cost optimization have been performed. It is used to diagnose long running 

queries and to inform the database professional how the query would be executed. 

 

EXPLAIN validselect_alv_command 

 

Notes 

 validselect_alv_command = any valid select command used to query an 

attribute version table. 

Example 

EXPLAIN SELECT ALV height.* FROM MyTable WHERE ALV_KEY = ‘tower1’; 
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Expected response from Server (success) 

mysql> EXPLAIN SELECT ALV height.* FROM towers WHERE alv_key = 

'tower1'; 

 

+--------------------------+ 

| Execution Path           | 

+--------------------------+ 

|      telecom.towers      | 

|           |              | 

|           V              | 

|      ------------------- | 

|      |    RESTRICT     | | 

|      ------------------- | 

|      | Access Method:  | | 

|      |    iterator     | | 

|      ------------------- | 

|           |              | 

|           V              | 

|      ------------------- | 

|      |     PROJECT     | | 

|      ------------------- | 

|      | Access Method:  | | 

|      |    iterator     | | 

|      ------------------- | 

|              |           | 

|              V           | 

|          Result Set      | 

+--------------------------+ 

25 rows in set (0.03 sec) 

 

 

6.3.4.12 Backup Command 

This command is used to make a binary copy of the ALV tables in the database 

specified. It stores them in the path provided.  

 

BACKUP TABLE tbl_name [, tbl_name] TO '/path/to/backup/directory' 

 

Notes 

 tbl_name = any valid table that is versioned. 

 The target folder must not contain previous backup files. 

 

Example 
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BACKUP ALV TABLE table1 TO 'c:\\backup'; 

 

Expected response from Server (success) 

mysql> BACKUP ALV TABLE table1 TO 'c:\\backup'; 

+-------+------------+----------+----------+ 

| Table | Op         | Msg_type | Msg_text | 

+-------+------------+----------+----------+ 

| error | ALV backup | status   | OK       | 

+-------+------------+----------+----------+ 

1 row in set (0.03 sec) 

 

 

6.3.4.13 Restore Command 

This command is used to restore a binary copy of the ALV tables in the database 

or list of tables specified. 

 

RESTORE TABLE tbl_name [, tbl_name] FROM '/path/to/backup/directory' 

 

Example 

RESTORE ALV TABLE table1 FROM 'c:\\backup'; 

 

Expected response from Server (success) 

mysql> RESTORE ALV TABLE table1 FROM 'c:\\backup'; 

+----------------+-------------+----------+----------+ 

| Table          | Op          | Msg_type | Msg_text | 

+----------------+-------------+----------+----------+ 

| testdb1.table1 | ALV restore | status   | OK       | 

+----------------+-------------+----------+----------+ 

1 row in set, 1 warning (0.03 sec) 

 

 

6.3.4.14 Version() Function 

This command is used to display the version of the MySQL engine currently 

running. This command will verify the system is running the ALV enhanced version of 

the mysqld executable. 

 

SELECT VERSION() 

 

Notes 
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 Although this command was not altered in the MySQL source code, it is 

included for completeness. 

Example 

SELECT VERSION(); 

 

Expected response from Server (success) 

+-------------------------+ 

| version()               | 

+-------------------------+ 

| 5.0.10a-beta-nt-ALV 1.0 | 

+-------------------------+ 

1 row in set (0.21 sec) 

 

 

6.4 Analysis 

This section describes the analysis performed while implementing and 

experimenting with the ALV query optimizer and execution components. All of the 

experiments were run on a 3.0Ghz AMD processor-based system running Windows XP 

Professional. The disk subsystem used was a hardware raid system incorporating two S-

ATA physical devices in a mirrored arrangement. The experiments were repeated using a 

conventional IDE-133 device with little or no variation in the measurements

35

. 

The following experiments were conducted using datasets created from publicly 

available databases. Appendix A describes these data sets, their origin, and translations 

and reformations for use in this work. Each of the following experiments was conducted 

using the same set of sample queries. 

 

6.4.1 Transformation 

                                                

35

 This is expected because the differences in the physical devices and their access protocols are very 

similar. Although throughput on the S -ATA devices theoretically could be faster, the addition of the raid 

subsystem nul lifies any advantage over IDE -133 devices. 
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One of the lesser costs in a database system is the transformation of a query from 

the SQL statement to the internal representation (data structure). MySQL uses a fixed 

data structure consisting of a class with lists and lists of lists as its members. The ALV 

query tree represents a decided departure from the MySQL internal representation. In 

order to minimize the changes to the MySQL server, it was decided to use the MySQL 

parser and form the MySQL internal representation, then transform that into an ALV 

query tree. Although this does add some processing time to the total time of a query, it 

does not add a significant amount of time since all of the transformations are done on 

structures that are in memory. Table 6-4 below gives examples of the time (in seconds) 

certain queries required for transformation from the MySQL internal representation to an 

ALV query tree.  

 

Query MySQL ALV 

SELECT * FROM authors_alv; 0.0000492241 

 

0.0031957970 

 

SELECT auLName, auFName FROM authors WHERE auState 

IN ('UT', 'CA'); 

0.0000820775 

 

0.0001537904 

 

SELECT * FROM authors JOIN bookauthor ON authors.auid = 

bookauthor.auid; 

 

0.0000737524 

 

0.0008519519 

 

Table 6-4: Query Transformation Data 

 

 

The first column contains the SQL statement for the sample query. The second 

column reports the data from a set of executions, reporting the time spent transforming a 

query into the MySQL internal representation. The third column reports the data from the 

same set of executions reporting the time spent transforming the MySQL data structure to 
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an ALV query tree

36

. Each value for this experiment is the mean value of twenty trials 

executed at a variety of times to ensure that the effect of current system load was 

minimized. 

The results of the experiment show that the ALV query transformation from the 

MySQL internal structure requires two orders of magnitude greater time to complete. 

However, it must be noted that an execution time of 0.003 is still very efficient and does 

not add significant delays to overall query processing. However, this time could be 

greatly reduced if the ALV query tree were to be constructed in the MySQL parser. 

 

6.4.2 Optimization 

The greatest cost in a database system is query optimization. MySQL uses a 

select-project-join optimizer that implements a flat optimization strategy devoid of 

heuristic rules, but does implement some cost-based analysis for access methods and 

joins. Table 6-5 below gives examples of the time (in seconds) of the optimization of 

certain queries.  

 

Query MySQL ALV 

SELECT * FROM authors_alv; 0.0000324064 

 

0.0000052940 

 

SELECT auLName, auFName FROM authors WHERE auState 

IN ('UT', 'CA'); 

0.0000433994 

 

0.0000227403 

 

SELECT * FROM authors JOIN bookauthor ON authors.auid = 

bookauthor.auid; 

0.0000733334 

 

0.0000048610 

 

Table 6-5: Query Optimization Data 

 

 

                                                

36

 This time is in addition to the time in the MySQL column.  
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The first column contains the SQL statement for the sample query, the second 

column reports the data from a set of executions reporting time required by the MySQL 

query optimizer, and the third column reports the data from the same set of executions 

reporting the time required by the ALV query optimizer. Again, each value for this 

experiment is the mean value of twenty trials executed at a variety of times to ensure that 

the effect of current system load was minimized. 

The results show that the ALV query optimizer performs approximately two 

orders of magnitude faster than that of the MySQL optimizer. This shows that the ALV 

query optimizer performs similar to that of a commercially available database system and 

does not require any significant time delays to optimize queries in a versioning system. 

 

6.4.3 Execution 

The next highest cost to that of optimization is query execution. The MySQL 

execution engine is difficult to describe. In essence, it is implemented as a series of 

compiled methods that are optimized for executing the individual parts of a select-

project-join query. The ALV execution is based on the ALV query tree and provides 

execution without the need of additional overhead or methods. Table 6-6 below gives 

examples of the time (in seconds) of the execution of certain queries. The data used in 

this experiment was implemented in both the native MySQL data store and the ALV 

clustered version store. 

 

Query MySQL ALV 

SELECT * FROM authors_alv; 

 

0.0023644350 

 

0.0007561995 

(0.000482031) 
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SELECT auLName, auFName FROM authors WHERE auState 

IN ('UT', 'CA'); 

0.0003637754 

 

0.0031957970 

(0.000482031) 

SELECT * FROM authors JOIN bookauthor ON authors.auid = 

bookauthor.auid; 

0.0032613920 

 

0.0016447480 

 

Table 6-6: Query Execution Data 

 

The first column contains the SQL statement for the sample query, the second 

column reports the data from a set of executions reporting time required by the MySQL 

query optimizer, and the third column reports the data from the same set of executions 

reporting the time required by the ALV query optimizer

37

. Each value for this experiment 

is the mean value of twenty trials executed at a variety of times to ensure that the effect of 

current system load was minimized. 

The results show that the ALV query execution as compared to the MySQL 

execution varies depending on the type of query. This is expected as the ALV execution 

engine is very different from the MySQL execution engine. In this experiment, the ALV 

execution engine outperformed the MySQL execution engine on the trivial query and the 

simple join. However, the ALV execution engine performed one order of magnitude 

slower than the MySQL execution engine for the second test case

38

. Note that the timings 

presented are very small and are of little significance for the overall query execution. 

Thus, the ALV query execution is also on par with that of a commercially available 

database system and does not require any significant time delays to optimize queries in a 

versioning system. 

 

                                                

37

 The implementation of the MySQL JOIN operation to/from non ALV data stores requires translating the 

MySQL data store to an ALV relation object. This time had a mean value of 0.000482031 for each query 

executed and was not included in the ALV execution times.  

38

 The cause for this has since been identified in the expression evaluation. Plans are underway to correct 

the anomaly.  
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6.5 Conclusion 

The ALV query optimizer, query tree, and query execution engine demonstrate 

the potential of implementing such technologies in a production relational database 

system. The fact that these technologies are based on academic views of implementation 

proves that academic rigor can be translated directly to industry without compromising 

the “science” behind the details. As the experiments show, the technologies presented 

represent effective and efficient technologies for use in a versioning system. 

 

6.6 Future Work 

The cost optimization step of the ALV query optimizer is very effective at 

identifying the benefits of using indexes for locating data in or iterating through a 

relation. However, the query optimizer could be designed to optimize or balance joins 

better than it does. For most joins, the existing strategy works well and will continue to 

generate near optimal executions. However, for complex joins in an environment that has 

complex indexes and multi-level indexes, the cost optimization step should be modified 

to balance joins better. Once this has been accomplished, the ALV query optimizer will 

be complete and robust enough to handle any environment and use. 

The ALVExecute class can be enhanced and query execution reduced by using a 

multithreaded execution variant of the pipeline. That is, each operation in the tree could 

be executed as a separate thread providing appropriate synchronization using mechanisms 

such as queues for preemptive and wait conditions. However, care must be taken to avoid 

deadlock and race conditions. 
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One of the most important features of MySQL is the query cache [MySQ05]. The 

query cache is a mechanism that stores the results of executed queries for reuse. This 

includes storing not only the parsed and optimized query, but also the query results. This 

gives MySQL the ability to respond quickly to repetitive queries and exceed the 

performance of database systems that do not cache queries. The ALV query tree can be 

used to implement a query cache. Work will need to be done to associate a result set 

(relation class) with a query tree. Fortunately, the implementation can easily be adapted 

for serialization and organization of a query cache. However, like the query tree and 

query execution, the ALV query cache will be functionally equivalent but with a 

distinctly different implementation. 

The SQL

ALV

 extensions developed to support versioning in a relational database 

system are not complete. A complete set of SQL commands would include the alter 

commands as well as enhancements to the select command for greater flexibility in 

performing complex queries. Additional development is necessary to complete the 

SQL

ALV

 commands. 
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Chapter Seven - Data Mining for Version Analysis 

 

 

 

Abstract 

Given that there now exists a relational database versioning system, called 

Attribute-Level Versioning (ALV), the attribute version data stored in the system has 

meaning when combined with the versioned data and inferences can be made by joining 

the versioned data with the attribute version data, selecting permutations of the multiple 

values. Also supported in this system is the concept of storing metadata with each 

attribute version. However, little has been presented as to the benefits of that metadata 

and how it could be used to gain additional knowledge of the versioned data. 

This chapter will show an application of data mining for asking questions of the 

attribute version metadata. The analysis and results of experiments to demonstrate how 

version information can be mined will be presented. 

 

7.1 Introduction 

Attribute version data as described in this work contains additional information 

about each attribute version in the form of metadata. The metadata is a means by which 

the analyst can store any additional information concerning the attribute version. 

Examples include storing information as to the origin, the confidence, reliability of the 

data, or sensitivity, or even temporal information for the data. This metadata represents 
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unique descriptions of the data that can be used to gain additional knowledge about the 

data. That is, it is feasible to use data mining techniques to gain additional information 

about the attribute versions and apply that to the versioned data. 

The following sections present the current research on data mining and machine 

learning, the application of data mining algorithms to analyze attribute version metadata, 

an analysis of the results, and a conclusion as to their success in meeting the goals 

defined above. This chapter concludes with a section outlining future work opportunities 

to improve the use of data mining algorithms with attribute version data. 

 

7.2 Background 

The process of finding useful patterns in datasets has been identified with many 

different labels, including data mining, knowledge extraction, information discovery, 

information harvesting, data archaeology, and data pattern processing [Fayy96]. Much of 

the research to meet these goals represents sub-disciplines such as artificial intelligence, 

machine learning, database theory and statistics. Data Mining (DM) is a phrase coined by 

statisticians, database professionals, and information technology experts to describe the 

quantification and qualification of data in databases.  

Data mining has come to mean many things among researchers. Some [Witt05] 

take the position that data mining is the application of machine learning algorithms to 

discover knowledge within data. Others [Date04] consider data mining to be “exploratory 

data analysis” where statistical analysis is used to discover patterns in large datasets. The 

first perspective can be considered a scientific position and the second a business 
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strategy-oriented position

1

. That is not to say that there isn’t science in the second 

approach. Rather, the motives for conducting research are largely guided by the needs of 

industry (business). Some simply consider data mining an artistic application of many 

disciplines [Thur00a]. 

While the first two positions are very similar, the most interesting difference lies 

with how large a dataset must be to produce valid results. While there is no definitive 

answer to this question, data mining researchers from the machine learning/scientific 

perspective generally consider the size of the datasets less important than the purity of the 

data

2

 [Witt05]. Conversely, researchers from the business strategy-oriented perspective 

consider files of greater sizes – the accumulated data for a given period or study area. 

Some only consider large amounts of data to be essential for evaluating conditions 

concerning time. Lastly, those that consider data mining an art form do so more from the 

point of view of the creative application of algorithms to form postulates for 

suppositions

3

 [Thur00a]. These suppositions are considered the problem, pattern 

expected, speculation to be verified, or hypothesis that is being proven.   

A brief mention of the coverage of data mining texts is useful to place this work 

in context. Some texts about data mining are written from a purely tool-centric view and 

present tool-centric concepts and implementations of data mining [Seid01]. While 

informative, these texts often limit exposure to scientific theories and practice and often 

                                                

1

 This distinction permits o ne to draw a parallel among the many texts and tomes written about data mining 

with fireworks – the data mining texts geared toward business and marketing strategies are the sparklers 

while texts involving algorithm development and machine learning are the  really big bangs. Care must be 

taken with either, but the later can leave you burned if used improperly.  

2

 Purity is the result of anomalies and errors being removed.  

3

 Correct formulation of the supposition is not necessary, rather it is usually consider ed a guiding principle 

or goal of the mining process [Witt05].  
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do not expose the reader to machine learning or statistical concepts. Other texts are so 

aligned with business-oriented applications of data mining that the concepts and practices 

of data mining are diluted and either contradict the current theory and practice or avoid it 

altogether [Grot98]. Care must be taken to choose a data mining reference text that serves 

the needs of the reader. Should the reader desire to learn the theories and practices of data 

mining, she should avoid texts that offer business-oriented or tool-centric views. Rather, 

the reader should look for texts that include topics such as machine learning, statistics, 

and in-depth discussions of data mining algorithms

4

. 

The following sections present historical context and current philosophies on data 

mining. These sections answer the questions, “Why do we need data mining?” “What is 

data mining anyway?” and “Isn’t it just another fancy marketing strategy designed to sell 

more donuts and beer?”

5

 For example, researchers use the marketing application to 

demonstrate how data mining can go horribly wrong [Witt05]. The most popular example 

is where a supermarket uses data mining to (incorrectly) predict the sales of products 

rather than using data mining to identify patterns of past purchases. Even when there are 

clear patterns identified, it has been shown that the results can be misinterpreted. 

 

7.2.1 Knowledge Discovery in Databases 

The phrase, “knowledge discovery in databases” (KDD), was coined from the 

artificial intelligence (AI) and machine learning (ML) communities. KDD is concerned 

                                                

4

 Failure to heed this warning may lead to misapplication of the tools or worse, incorrect interpretation of 

the results. 

5

 A common misconception concerning data mining is that it is only usef ul in predicting market trends.  
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with the study of how knowledge can be gained from data. In fact, the term KDD was 

originally the term used by researchers in the AI and ML communities to refer to the 

application of machine learning algorithms for knowledge exploitation. Unfortunately, 

the term KDD has come to mean something somewhat less than that and the term “data 

mining” has taken precedence. In fact, the two terms and often interchanged or used 

together [Piat00]. KDD has also been defined as “the process of identifying valid, novel, 

potentially useful, and ultimately understandable structure in data,” [Rals03]. 

Interestingly, some researchers [Fayy96] consider KDD a much broader spectrum 

of tools, algorithms and techniques that includes data mining as one of its core areas. In 

fact, data mining is considered a subprocess or step in a much larger process that is KDD. 

Figure 7-1 below illustrates this distinction. 

 

Figure 7-1: The Knowledge Discovery Process 

 

 

The KDD process begins with developing an understanding of the data and 

relevant prior knowledge and suppositions formed from examining the data in its native 

environment (queries). Next, the appropriate data is identified and extracted from the 

pool of available repositories. The data is then cleaned by removing invalid data and 

preprocessed for ingestion into the desired model or modeling environment. Then the 
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data is restricted and projected to form datasets that describe (contain data for the solution 

of) the problems or knowledge being sought. The data is then processed using a data 

mining tool to discover patterns and relationships within the data. Lastly, the results are 

interpreted and the answers formulated [Fayy96]. 

It should be noted at this point that the general outline of these steps follows that 

of what many of the texts refer to as the data mining process. In fact, this work follows a 

similar process. Regardless of what the process described in this chapter is called, the 

base premise is still valid: knowledge can be gained by applying machine learning 

algorithms to data to discover new patterns and relationships among the data. 

 

7.2.2 Machine Learning 

A brief mention of machine learning is necessary to understand the correlation 

with data mining. Machine learning is defined as “the study of methods for improving 

computing systems through observation and analysis of their behavior rather than by 

direct programming,” [Rals03]. That is, machine learning is the identification of 

significant observations and the application of those observances to form new knowledge 

– learning from machines. 

 

What is learning? Learning can be defined as any of the following: 

 Gaining knowledge through study or experience 

 Gaining knowledge through instruction 

 Observing and retaining 
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 Remembering and applying 

 Adapting to past observations 

 

Most of these do not have any intuitive application to computers and in general 

seem very human. However, it should be noted that computers are intellectual aides and 

not self aware beings capable of learning

6

. That is, computers – machines – are in 

themselves a mechanism by which humans learn. Thus, the application of computer 

algorithms can indeed aid in the learning process. In essence, this represents learning via 

the acquisition and application of knowledge [Witt05]. 

There are many applications of machine learning, most notably in robotics where 

robots can adapt to their environment by storing observations about their environment 

and applying those observations to predict new conditions. Another application is 

prediction of network vulnerabilities based on current usage. Similarly, machine learning 

algorithms are used to predict credit card fraud. But the most recent application of 

machine learning is in finding interesting patterns in data, sometimes called data mining 

[Rals03]. 

Machine learning tasks can be grouped into three categories: supervised, 

unsupervised, and reinforced. In supervised learning, the algorithms used are predictive 

and produce discrete outcomes. The goal of supervised learning is to form a function 

based on the observations that produces a specific output for a given input. Examples of 

supervised learning algorithms include decisions trees (CART and C4.5) and naïve Bayes 

                                                

6

 At least, not yet. With apologies to Asimovians everywhere.  
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learning [Rals03]. In unsupervised learning, the algorithms are used to find structure in 

the points of data. The goal of unsupervised learning is to discover patterns of data using 

a probabilistic map of the observances. Examples of unsupervised learning algorithms 

include EM, SimpleKMeans, and clustering schemes [Rals03]. In reinforced learning, 

algorithms are created to define a next state based on the observation of a sequence of 

events. The goal of reinforced learning is to be able to identify patterns in sequences and 

adapt to form the best response. Examples of reinforced learning include strategy games 

and robotic discovery (e.g., bomb capture and disposal, disaster victim recovery, and 

online gaming) [Rals03]. 

 

7.2.3 Data Mining 

Data collection has become an integral part of almost every organization. As time 

passes, more and more data is collected, making the interpretation of the data harder to 

accomplish. It is easy to identify patterns in small or simple data stores, but recognizing 

patterns becomes increasingly difficult as the complexity and quantity of the data 

increases [Paul02]. What we need are sophisticated methods of discovering knowledge 

from the data that can be used to satisfy or contradict suppositions formed from the 

nature (original meaning) of the data. That is, it is easy to quantify how many of types of 

entities or their properties exist. It is much harder to identify the trends of the values of 

the properties of entities. 

Data mining is the process of fitting models to, or determining patterns from 

observing and processing the data [Fayy96]. Some texts define data mining as a 
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companion to or closely related to information retrieval – the study of discovering 

knowledge in information systems [Tuck04]. Other texts define data mining as an 

application of machine learning techniques [Witt05]. Others even define data mining as 

its own genre supported by or incorporating technologies such as statistics, machine 

learning, database theory, knowledge discover in databases, pattern recognition, artificial 

intelligence, and information retrieval [Rals03]. 

Vendors of most major database management systems and data analysis products 

have included data mining tools that manipulate the data in relational databases. Mining 

unstructured repositories such as text, imagery, or video has received a lot of attention 

and remains an area for further research. For instance, applying data mining to the vast 

quantities of data on the world wide web to extract meaningful information is no small 

feat [Thur00].  

Many of the larger database system providers (Microsoft [Micr03], Oracle 

[Orac05]) provide tools for performing data mining. Some companies have built 

protocols and access methods such as Microsoft’s extensions to the OLE DB 

communication protocol [Netz01] that enable database professionals to connect their 

database system to data mining tools more easily. With the relatively recent rise of 

popularity of data mining, vendors are finding new markets to explore the application of 

data mining. 

As we shall discover in the next few sections, data mining can be a very powerful 

tool for extracting useful information from patterns in the data. However, it can also 

extract erroneous and useless information if it is applied or the results are interpreted 
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incorrectly. A key to avoiding these pitfalls is a basic understanding of what data mining 

is and what things to consider in planning a data mining project [Thur00]. 

 

7.2.3.1 Applications of Data Mining 

Data mining systems collect, store, and organize data for use in modeling the data 

and identifying patterns in the data. Application areas include: medicine, finance, 

intelligence, law enforcement, defense, logistics, education, and process control. 

However, the most popular application is in marketing and business strategies. Example 

uses of data mining include [Thur00]: 

 

 Credit agencies can use data mining to grant loans based on observations of 

people with similar buying patterns, income, and credit 

 Marketers can use data mining to organize merchandise based on buying patterns 

and information about associations between products 

 Pharmaceutical companies can use data mining to analyze prescriptions in order 

to send promotional material to targeted customers 

 Law enforcement agencies can use data mining to review spending patterns and 

travel data to detect abnormal behavior of suspects 

 Physicians can use data mining to analyze X-ray images to detect abnormal 

patterns 
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 Commercial transportation companies can use data mining to discover travel 

patterns and trends to maximize passenger/cargo and thus reduce customer costs 

while maximizing profit 

 World wide web search engines can use data mining to make search engines more 

effective by identifying trends in search parameters through the application of 

clustering 

 

Recently, work has been done to apply data mining to temporal data. The use of 

temporal databases has fueled a need to adopt data mining to temporal analysis. One way 

this is being accomplished is by separating the temporal data from the original data and 

modifying existing algorithms to identify sequences or patterns of time values in the data. 

The results of experiments show significant justification for additional work in this area 

[Rodd02]. 

 

7.2.3.2 Data Mining Algorithms 

All data mining algorithms exhibit characteristics that can be grouped into three 

parts: 

1. Modeling function – the purpose of the algorithm. 

2. Preference – the criteria that corresponds to the selected algorithm

7

. 

3. Search or iteration routines to process the data.  

 

                                                

7

 Not all criteria fit all algorithms.  
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Furthermore, data mining algorithms can be categorized as being either predictive 

or descriptive in nature. That is, they either make predictions about the data based on the 

known results from data that contains known descriptive elements, sometimes called 

training data

8

, or the algorithms identify patterns or relationships in the data [Dunh03]. 

Data mining algorithms can be described by their functions or roles [Dunh03]. 

These tasks include; classification, regression, time series analysis, prediction, clustering, 

summarization, association rules, and sequence discovery. Table 7-1 below describes 

each of these functions and identifies their category. 

 

 

 

 

Function Description Category 

Classification Maps data into groups or classes. Sometimes 

called supervised learning because the classes 

are usually defined in advance. 

Predictive 

Regression Maps a data item (attribute) to a specific 

value. These algorithms learn the function 

used to predict the value using a variety of 

statistical techniques. 

Predictive 

Time Series Analysis Examines the values of attributes over time. 

These algorithms identify similarities over 

time, classification of behavior over time, and 

prediction of future values based on historical 

record. 

Predictive 

Prediction A type of classification that determines values 

or states based on historical analysis. 

Predictive 

Clustering Similar to classification where data is grouped 

into classes, but in this case the classes are 

discovered from the data. Clustering is 

sometimes referred to as unsupervised 

learning because the classes are discovered 

rather than supplied a priori. 

Descriptive 

                                                

8

 The notion of “training” comes from the fact that the training data provides the patterns and/or 

relationships a priori for the algorithm to use against other data (called test data).  
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Function Description Category 

Summarization Maps data into subsets with associated 

descriptions. Also called characterization or 

generalization. These algorithms describe 

data. 

Descriptive 

Association Rules These algorithms are used to discover 

relationships among the data. Rules are 

automatically generated from the data to 

describe the relationships. These algorithms 

are used to establish link analysis (sometimes 

called affinity or association analysis). 

Descriptive 

Sequence Discovery Used to discover sequential patterns in the 

data. Usually associated with temporal 

elements such as time series or time stamps. 

Descriptive 

Table 7-1: Data Mining Functions 

 

 

Implementations of each of these functions are what define the list of data mining 

algorithms. Although there are many different algorithms, most can be grouped by the 

functions listed above [Dunh03]. 

One area of data mining algorithm research that expands the realm of prediction 

and description is the application of uncertain reasoning. Uncertain reasoning is the 

application of expertise to form conclusions without specifics or complete rules. 

Uncertain reasoning is a topic of study in artificial intelligence. The two primary 

algorithms classes studied using uncertain reasoning in data mining are Bayesian 

networks and artificial intelligence neural networks. Bayesian networks explore 

unknowns using probability calculations while neural networks explore unknowns using 

a symbolic graph structure for learning patterns to deal with uncertainty. For more 

information on this topic, see Chen’s text [Chen01]. 

 



www.manaraa.com

Bell 2005 – Attribute-Level Versioning: A Relat ional Mechanism fo r Version Storage and Retrieval   291  

 

7.2.3.3 The Data Mining Process 

While some texts disagree with others [Dunh03, Paul02] on what a typical data 

mining process is, there are some common practices among the literature. Figure 7-2 

below presents a pictorial representation of the data mining process which can be 

described as follows. The data sources are combined to form a single data set, impurities 

and errors are removed from the data, the data is mined, the results analyzed, and finally 

the results are published. 

 

 

Figure 7-2: The Data Mining Process 

 

 

These steps can be grouped to form a typical data mining process which includes 

the following steps: 

1. Problem Definition – what problem are you trying to solve? What dataset 

contains the information you want to use to formulate an answer? What are your 

suppositions about the data? 

2. Data Preparation – transforming the data into a form usable by the data mining 

workbench of choice. This include performing queries to define the dataset you 
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want to mine along with removing attributes or rows for a more concise dataset 

definition. 

3. Model Experimentation – once the data is prepared and ready to be mined, 

experiments must be undertaken to determine the correct algorithm necessary to 

achieve the goals specified in step 1. 

4. Model Validation – due to the interpretive nature of data mining results, it is 

necessary to conduct a validation of the model results. That is, examine the results 

and test the conclusions against known cases to show that the answers produced 

are the correct ones. 

 

Each application of data mining and even the data mining tools themselves may 

introduce a specific set of steps. However all contain those listed above. The work 

presented below follows these four steps to answer suppositions of the version metadata. 

Problem definition requires one to understand the data that will be mined. This 

includes analyzing the needs of the organization, the use of the data, and forming 

suppositions (questions) about the data. This could take the form of finding a specific 

pattern within the data, supporting or rejecting a hypothesis formed about the data, 

predicting missing values based on patterns of data that contain values, and discovering 

relationships within the data.  

Once the supposition is formed, the next decision lies in choosing the appropriate 

data mining environment or tools. The choice of tool or environment may require specific 
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modification or reshaping of the data for use in the tools. These decisions form the goals 

of the data mining process and shape the decisions made later in the process. 

Data preparation is a process by which the data is transformed into a format that 

the chosen data mining tools can process. Some tools based in database management 

systems or those designed to operate with database systems require the data to be 

formatted into a logical representation known as a cube [Micr00]. An example of a cube 

is shown in figure 7-3 below.  

A cube is a structure that contains a hierarchy of levels. A level is an element of a 

dimension hierarchy which describes data from the most summarized to the most detailed 

units the dimension. Levels are arranged in hierarchies which define the relative positions 

of members. Dimension levels are powerful tools as they can be used to “drill down” to 

granular levels or “drill up” to summarized levels of data in a cube. For more information 

on cubes, see Microsoft’s SQL Server 2000 documentation and associated help files 

[Micr00] or Han’s text in [Han01]. 
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Figure 7-3: A Data Mining Cube 

 

 

While specialized data structures like the cube described above assist in the data 

mining process by providing aggregate mechanisms, most data mining solutions use a 

more basic data structure such as a flat rows and columns format (not unlike a table in a 

database). For example, the Waikato Environment for Knowledge Analysis (Weka)

9

 data 

mining tools require the data be formatted in either attribute-relation file format (ARFF), 

comma separated values (CSV), or via a JDBC database connection [Witt05]. 

Another storage technique that is often associated with data mining is called a 

data warehouse. A data warehouse is an implementation of a transactional database that is 

used to store vast amounts of information over a distributed system, sometimes refered to 

as online analytical processing (OLAP) versus an online transaction processing (OLTP). 

                                                

9

 Weka is pronounced to rhyme with “Mecca” and is named after a flightless bird with an inquisitive nature 

found only on the islands of New Zealand [Witt05].  
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Unlike OLTP systems, OLAP systems are not typically used interactively to modify data. 

Rather, OLAP systems are used to archive data over time – hence the “warehouse” 

mantle. OLAP systems are often used as fertile ground for constructing data for data 

mining [Rals03]. 

Once the data is manipulated into the proper format, a data cleaning process is 

performed to remove errors or ambiguities from the data. Unfortunately, this process is 

often the most time consuming and the most error prone. Experience with the available 

algorithms and the data modeling environment are often required in order to get this step 

correct [Witt05]. This is one of the reasons data mining is considered an art form. 

Now that the data is formed in the proper format and all errors are removed, the 

next step is the selection of a data mining algorithm. This step is considered to be the 

most difficult of all [Witt05] because it requires knowledge of all of the algorithms 

available in the environment or tool of choice. One must understand the application of 

each of the algorithms in order to choose the most appropriate. Often times it is necessary 

and even beneficial to choose several algorithms, record the results of each, and compare 

them to choose the most correct. However, it should be noted that the nuances of the 

algorithms are such that variants of each algorithm can generate a slightly different 

model. That is, the results may be affected with each change of a variable or parameter. 

The analysis of the results of the data mining process concludes the effort and it is 

here that once again that experience and art are visible. Interpreting the results of data 

mining algorithms is second in difficulty only to selecting an algorithm. Each algorithm 

presents results in a different way and requires careful analysis to interpret them. This 
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area is perhaps the most prone to scrutiny and the most likely to cause false conclusions 

or misapplication of the results [Witt05]. 

 

7.2.3.4 Analyzing the Results of Data Mining 

Now that the data has been culled, shaped, and acted on by the data mining 

algorithms, we are faced with interpreting the results of the algorithms. Indeed, most data 

mining practitioners do not consider the data mining process complete until the results 

and even the performance of the algorithms used are validated [Witt05]. 

There are two main strategies used in analyzing the results of data mining. The 

first involves using appropriate viewers to display the results, and the second is to 

examine the results of the algorithm – the metadata generated during algorithm execution 

– to determine if the algorithm was the correct algorithm to use and if it produced the 

desired results [Witt05]. 

In order to achieve a high degree of confidence in the results, one must visualize 

the results using the appropriate view of the algorithm’s output. Algorithms can be 

grouped by the types of outcomes they produce. The following describes the types of 

outcomes [Thur00]: 

 

 Classification Algorithms – group or classify data based on a predefined 

attribute. For example, “people who live in Richmond and own apartments 

costing more than $100, 000” is a classification of data on residents. 
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 Regression Algorithms – make predictions of missing values using examples of 

existing data. Examples include “records that include value X for attribute A and 

value Y for attribute C have Z as the value for Attribute B, thus the missing value 

for a record with no value for Attribute B given {A=X, C=Y}, the value of B is 

Z.” 

 Time Series Analysis – make predictions of trends over time. Examples include 

“given the trend of winning seasons in which 6 or more games were won on the 

road, the Washington Redskins will play in the 2006 superbowl

10

.” 

 Prediction Algorithms – are used to forecast trends such as “in 2010, homes in 

Northern Virginia will cost an average of $3,000,000

11

.” 

 Clustering Algorithms – classify or group data based on a previously undefined 

attribute such as, “all employees in cluster A make less than $24,000, those in 

cluster B make between $24,000 and $50,000, and those in cluster C make more 

than $50,000.” 

 Summarization Algorithms – examine trends for clues to deduce another 

characteristic. For example, you might analyze spending patterns and income 

classes to predict how many children a married couple is likely to have. 

 Association Algorithms – make correlations among the data, deducing rules that 

define relationships. Examples include “disposable diapers and beer are purchased 

together” or “John and Charles have similar travel habits.” 

                                                

10

 It happened in the past, why no t this year? 

11

 Don’t belittle this example. Have you checked out the cost of housing in America’s largest population 

areas lately?  
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 Sequence Discovery – compares current data to a pre-established norm to detect 

anomalies. Network management tools use this technique to alert system 

administrators to unusual user behavior. 

 

Analyzing the performance of a data mining algorithm is a controversial process 

[Witt05]. There are many techniques one can use to evaluate the performance of an 

algorithm. Some involve examining the effects different parameters have on the 

algorithm’s outcomes. For example, categorization algorithms are sensitive to the 

statistical regression technique used (cross-validation versus single pass). Others involve 

evaluating how well the algorithm performs against the test dataset. For example, is it 

able to process the data using only data that can fit into main memory or is it able to 

process data iteratively? These performance factors and the applicability of the results of 

the algorithm as well as how the outcomes can be viewed all build a ruler by which one 

can access and interpret the results of a data mining process [Witt05]. 

 

7.2.3.5 What about privacy? 

One area of deep debate is the protection of information that may be used against 

persons. While not considered a nefarious activity, the results of data mining network 

information could lead to the discovery of usage patterns about individuals that could be 

used against them. For example, it is possible to use data mining to learn patterns of 

websites visitations. Part of that data could include private information such as logon 

credentials and financial information. While public disclosure of this information is 
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protected by law, data mining may require the inclusion of this information in order to 

successfully satisfy the suppositions made. Unfortunately, data mining tools make it 

easier for even novice users to obtain sensitive information which could compromise an 

individual’s privacy. Researchers tend to agree that technology alone can not solve this 

dilemma. Amendments to appropriate privacy laws are needed [Thur00]. 

Wahlstrom and Roddick presented the following argument, “We exist in an 

environment of rapid change in which technology has an ever-increasing social 

relevance. The challenge now is to adapt our approaches to the application of new 

technologies, enabling us to use the tools technology provides wisely and with 

consideration for our society, its members, and its future,” [Wahl01]. Clearly, the 

application of data mining concerning privacy and the ethical use of the data is a topic 

that transcends research and philosophy to the level of law and cultural practices

12

. 

 

7.2.3.6 Data Mining Tools and Environments 

There are many data mining tools available for purchase or via open source or 

trial license. These products can be grouped into three categories; 1) integrated data 

mining tools that work with relational database management systems (RDMBS) or 

statistical systems, 2) workbench data mining environments that offer integrated data 

mining tools to support data ingestion, algorithm execution, analysis of results, and 

visualization, and 3) standalone data mining tools that implement one or more of the 

types of data mining algorithms. Examples of each of these types of tools are shown in 

                                                

12

 Which also imparts a great deal of responsibility on data mining researchers and practitioners?  
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table 7-2 below. A comprehensive listing of data mining tools can be found in Dunham’s 

text on data mining [Dunh03]. 

 

Category Product Vendor Supported Functions 

Integrated Darwin Oracle Corporation Clustering, prediction, 

classification, association 

rules 

Integrated SQL Server Microsoft Corporation Clustering, prediction 

Integrated AnswerTree SPSS Inc. Classification 

Workbench AC

2

 ISoft Clustering, classification, 

prediction, segmentation 

Workbench Knowledge 

STUDIO 

ANGOSS Software 

Corporation 

Classification, clustering, 

prediction, rules 

Workbench XpertRule 

Miner 

Attar Software Ltd. Association rules, 

classification, clustering 

Standalone CART Salford Systems Classification 

Standalone Cubist RuleQuest Research Ltd. Numerical modeling 

Standalone See5 RuleQuest Research Ltd. Classification 

 

Table 7-2: Data Mining Products 

 

 

The data mining tool used in this work is the Weka data mining environment

13

. 

Weka is available via open source and thus can be downloaded and used royalty-free 

[Witt05]. Weka is unique in that it is written in Java and can run on many different 

platforms. Weka provides a rich command-line tool as well as three GUIs for performing 

data mining. The workbench includes many of the data mining algorithms and contains 

tools for data pre-processing, classification, regression, clustering, association rules, and 

visualization [Witt05]. 

 

                                                

13

 Oddly, Weka was not inclu ded in Dunham’s list of data mining products.  
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7.2.3.7 Machine Learning versus Statistics: What’s the difference? 

Cynics may equate machine learning with artificial intelligence and view data 

mining as simply statistics plus marketing concepts. However, that cannot be farther from 

the truth. In truth, there is a continuum among machine learning and statistics. Both are 

used in the process of data analysis and cannot be removed from data mining. That is, one 

cannot execute a data mining model without statistics and the analysis of the results of 

those models against live data results is a by product which is machine learning. 

However, machine learning and statistics have had different traditions. Statistics has been 

focused on testing hypotheses whereas machine learning has been focused on forming a 

process as a search of possible hypothesis. But this is a vast oversimplification: statistics 

is far more than hypothesis testing and some machine learning techniques don’t involve 

searching. Statistics is a foundation for data mining algorithms and evaluation techniques. 

Machine learning provides methods to learn from the results of data mining algorithms 

and models [Witt05]. 

 

7.3 Data Mining in a Versioning Environment 

The goals for mining version data are similar to the goals of mining temporal 

data. In temporal databases, the goal to mining data is to discover frequent sequences 

where correlations are discovered among events in time. In a similar way, the goal of 

mining version data is to discover frequent occurrences of patterns within the version 

metadata. Here, the version metadata stores the time sequences [Rodd02]. Metadata is 

used to locate patterns that infer meaning among the metadata and thus add additional 
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knowledge about the versioned data. There have been studies of mining metadata in the 

text mining research area [Thur00]. Many of those techniques are applicable to mining 

version metadata. 

Research in text mining has identified the need to track and predict certainty or 

confidence in the results of the analysis [Han01], whether the original data items (the 

content of the texts that are being mined) contain relevant data with a high degree of 

confidence [Thur00a]. In a similar way, the identification and tracking of reliability and 

confidence in the version data is a primary area of concern. The goals of the data mining 

algorithms for this project are to classify and categorize the data based on the version 

metadata. Algorithms are included that classify, predict and learn, with learning being the 

key to a continuum of use. Example suppositions are shown in table 7.3. 

 

Supposition Possible Outcomes 

What is the confidence of an attribute version 

given its source? 

Predicting missing values. 

What is the confidence and reliability of a subset 

of the attribute version data? 

Assessing patterns of the data. 

What sources tend to provide data of low 

reliability or induce lower confidence levels? 

Categorizing (clustering) the data. 

 

Table 7-3: Example Suppositions for Mining Version Metadata 

 

 

7.3.1 How are Attribute Versions Created? 

The generation of attribute versions is the product of a merger of one or more 

datasets. There are several ways to accomplish this. Datasets could be merged using a 

program that reads two or more datasets and maps the data such that the attributes of a 

table in one dataset is mapped to the attributes of a table in the other dataset. Although 
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this scenario is a possible implementation, it is very dependent on a static mapping 

between the tables and is difficult to automate.  

However, if one considers the advantages of a semantic web environment where 

all datasets are mapped using ontologies to domains – a process known as knowledge 

representation or knowledge modeling [Pere03], it is then possible to build relationships 

among the ontological domains so that any two datasets can be mapped to a common 

theme [Alle00]. More specifically, the ontologies define how the data in each table is 

mapped to the ontology of the domain in question. In a semantic web environment it 

becomes easier to identify collisions in the data. This is possible because the data is 

mapped to an ontology that defines its properties. When two objects from two different 

datasets are loaded, the ontologies can be used to detect the collisions [Anto04]. 

Furthermore, the collisions can be resolved either by collapsing the data to form a 

composite view of the object using aspects from each dataset or  by storing the object 

using one set of attributes from one dataset (usually the more trusted one) and storing 

collisions among the attributes as attribute versions. It is this mechanism that is used by 

the sponsor of this work to generate attribute versions for their data. 

 

7.3.2 ALV Metadata Preparation 

The first step in the data mining process is problem definition. In this experiment, 

the problem or supposition proposed is based on a commonly occurring analytical 

assessment of the data – how reliable is this data? Applying that question to version 

metadata, the question can become how reliable is the version data? One possible 
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supposition of the analysis could be that some sources are less reliable than others. Which 

sources are less reliable? Furthermore, one might also wish to ask, given sources that are 

less reliable, how are they grouped by sensitivity or confidence? 

In the example data used in this experiment, the version metadata contained 

attributes that assess or categorize the data. These metadata fields include reliability 

(High, Medium, Low, Unknown), Confidence (Fact, Validated, Confirmed, 

Unconfirmed), Source (TV, SGC, PFJ, JPF, Reference, Radio, NID, Article, Newswire), 

and Sensitivity (UNCLASSIFIED, CONFIDENTIAL, SECRET)

14

. Reliability is a 

measure of how much the data (attribute version) can be trusted. Confidence is a measure 

that the analyst has with how factual the data is. Source is the originator or supplier of the 

information. Sensitivity is a measure of how data should be handled with respect to 

visibility (who can and can’t see it). It was decided to use a generated dataset rather than 

an actual dataset due to several factors but primarily because the data itself is protected 

by intellectual rights and law. 

All of these metadata attributes support the suppositions discussed above. Thus, 

an extract of this data along with the keys to link the attribute versions to the versioned 

data are necessary to begin the data mining process. 

The next step in the data mining process is to prepare or transform the data. Since 

the Weka workbench was chosen as an environment to conduct the data mining 

experiment, the attribute version data had to be converted to the attribute-relation file 

format (ARFF). Fortunately, the attribute version data can be represented in this format 

                                                

14

 This work does not contain any classified material. All markings are used purely for demonstration 

purposes and do not indicate any sensitivity whatsoever.  
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easily by extracting the data from the cluster version store and writing it to a file using 

the ARFF syntax. A standalone application (ALVDMPrep) was created to perform this 

conversion. ALVDMPrep requires the clustered version store to be offline to be 

processed. This was necessary to permit reading the file twice – once to produce the 

metadata that the ARFF format requires and once to read an attribute version and write it 

out in ARFF format. For more information on the ARFF format, see Witten and Franks’ 

text on data mining [Witt05]. 

The creation of the ALVDMPrep application made it possible to produce a 

summary of the data concerning the attribute versions included in the version store. 

Attributes that contain nominal values (all of the attributes in the example do) are 

grouped and reported by frequency where all of the numeric data is reported with the 

mean, standard deviation, and variance. This data is helpful in permitting the analyst to 

view how the data is composed and can provide the analyst with evidence for choosing 

an algorithm. For instance, some algorithms work with nominal values while others work 

with numeric or date/time values. An example of the statistics generated for a simple test 

file are shown below. 

 

% Statistics 

% Attribute Versions: attribute_name 

%  int, float values:  (mean, stddev, var) 

%  nominal values      (value, count) 

%                      frequency 

% Metadata: attribute_name 

%  int, float values:  (mean, stddev, var) 

%  nominal values      (value, count) 

%------------------------------------------------------- 

% Attribute Version: x 

%     (15.0000, 2.2804, 5.2000) 

%     Frequency: 100.00% 

% 

% Metadata: status 
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%     (ok3,4), (ok2,3), (ok1,3) 

% Metadata: fvalue 

%     (1.5760, 0.3077, 0.0947) 

% Metadata: ivalue 

%     (1328.6000, 26.0546, 678.8400) 

% Metadata: alv_key 

%     (5.5000, 2.8723, 8.2500) 

% 

 

The data used in the experiment consists of approximately 124,000 attribute 

versions of the airmen dataset (see Appendix A for a complete description of this 

dataset). A training set was generated for the data that included all permutations of all of 

the metadata attributes (excluding keys). This training set was used to train the classifier 

algorithms. An example of the statistics generated for this file when the ALVDMPrep 

application was run is shown below. 

 

% Statistics 

% 

% Attribute Versions: attribute_name 

%  int, float values:  (mean, stddev, var) 

%  nominal values      (value, count) 

%                      frequency 

% Metadata: attribute_name 

%  int, float values:  (mean, stddev, var) 

%  nominal values      (value, count) 

%------------------------------------------------------- 

% 

% Metadata: Sensitivity 

%     (UNCLASSIFIED,322), (SECRET,322), (CONFIDENTIAL,340) 

% Metadata: Source 

%     (TV,106), (SGC,44), (PFJ,46), (Reference,100), (JPF,45), 

(Radio,84), (NID,209), (Article,186), (Newswire,133) 

% Metadata: Confidence 

%     (Unconfirmed,332), (Confirmed,142), (Fact,202), (Validated,252) 

% Metadata: Reliability 

%     (High,117), (Medium,101), (Unknown,244), (Low,416) 

 

 

7.3.3 Algorithm Choice 

Now that the data is prepared, the next step in the data mining process is 

experimenting with algorithms. This was accomplished by first examining all of the 
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applicable algorithms and choosing the types of algorithms that would best answer the 

suppositions. In this case, a clustering algorithm was best because we wanted to find 

patterns in the data and group those patterns to visual analysis.  

The Weka workbench provides many different clustering algorithms. These 

include, Cobweb, EM, FarthestFirst, MakeDensityBasedClusterer, and SimpleKMeans. 

Cobweb implements both the Classit and Cobweb algorithms for both numeric and 

nominal values. EM is an algorithm that uses expectation maximization and permits the 

analyst to choose the number of clusters to generate. FarthestFirst implements the farthest 

first algorithm using k-means. MakeDensityBasedClusterer is a wrapper for a cluster 

algorithm used to return distribution and density information. SimpleKMeans implements 

a k-means algorithm for locating clusters for nominal values. 

The available algorithms were run several times on the training data producing 

few or no comprehensible results. This is because the training data contains all possible 

groupings thus no clusters beyond the examples. For instance, if one were to cluster the 

training data on reliability, the algorithms generally reported exactly four clusters. 

However, when applied against the test data, the SimpleKMeans algorithm produced the 

expected results showing two clusters for the reliability attribute. A check through the test 

data and a comparison of the output of the ALVDMPrep application confirm this. None 

of the other algorithms tested provided the expected results. Most showed widely varying 

cluster groupings and were very sensitive to changes in input parameters. Thus, the 

SimpleKMeans algorithm was chosen as the best clustering algorithm for addressing the 
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suppositions and fitting the data. The results of running the sample data using the 

SimpleKMeans algorithm are shown below.  

 

=== Run information === 

Scheme:       weka.clusterers.SimpleKMeans -N 2 -S 10 

Relation:     airmen_alv 

Instances:    112799 

Attributes:   4 

              Reliability 

              Confidence 

              Source 

              Sensitivity 

Test mode:    user supplied test set: 1018 instances 

 

=== Model and evaluation on test set === 

kMeans 

====== 

Number of iterations: 3 

Within cluster sum of squared errors: 232191.0 

 

Cluster centroids: 

 

Cluster 0 

 Mean/Mode:  Low Unconfirmed NID SECRET 

 Std Devs:   N/A   N/A   N/A   N/A   

Cluster 1 

 Mean/Mode:  Medium Validated Article SECRET 

 Std Devs:   N/A   N/A   N/A   N/A   

 

Clustered Instances 

0       810 ( 80%) 

1       208 ( 20%) 

 

 

The last step in the process is model validation. The next section explains the 

results of the experiments and presents a validation of the model generated. 

 

7.4 Analysis 

Validation of data mining model results should take into consideration not only 

what the results are, but also how they answer the suppositions, and how well the 

algorithm performed. For this experiment, the algorithm ran in a reasonable amount of 
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time, requiring only approximately 40 minutes for a complete run, and did not require 

any additional system resources

15

.  

In this case, validation of the data mining model generated in the experiments 

required examining the results using visualization methods (graphs) of the data with 

respect to the clusters found and the distribution of the data itself. Since distribution 

counts were available, the results of the data mining algorithm should have depicted the 

same distribution with respect to the location of the data points on the graph. The most 

important aspect to consider is how well the results answered the suppositions. This can 

once again be best addressed by examining the results in a graphical form. 

What was not known, however, was how the data was going to be grouped. 

Furthermore, it was not possible to anticipate how many groups to expect. The following 

figures are the visualization of the results of the SimpleKMeans algorithm.  

Figure 7-4 depicts the locations of the reliability data (y-axis) and source (x-axis). 

The clusters are represented as different colors. Clearly, cluster 0 (indicated in blue) 

contains most of the data that has a reliability value of low or unknown and is primarily 

from three sources; Radio, NID, and Newswire

16

. The knowledge that can be learned 

from this graphic is that most of the data is of low reliability and originates from three of 

the sources more frequently than the others.  

 

                                                

15

 It should be noted, however, that the system that hosted the Weka software suffered degraded 

performance while the algorithm was running. In essence, it became a denial of service incident. Clearly, 

this algorithm should either be run on a dedicated workstation or left alone to ponder itself for a time.  

16

 This fictional data shows that you can’t always believe what you hear on the radio, read in the paper, or 

get from three letter agencies.  
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Figure 7-4: Results of Clustering - Source versus Reliability, Clusters Highlighted 

 

 

Figure 7-5 depicts the same results presented using color coding on the sources 

themselves. As expected, the sources are grouped by color vertically shown in relation to 

the associated reliability value. This form of the graph made it possible to identify which 

sources had the highest concentration of hits for each reliability value. The knowledge 

that can be learned from this graphic is that the NID source can be a candidate for 

removal from the pool of sources of information due to its demonstrated poor reliability. 
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Figure 7-5: Results of Clustering - Source versus Reliability, Sources Highlighted 

 

 

Figure 7-6 depicts the results presented using sources (x-axis) and confidence (y-

axis). This form of the graph made it possible to identify that the confidence factor for the 

data seems to have an even distribution among the range of confidence values but shows 

that the data is once again centered in the three sources previously identified. The 

knowledge that can be learned from this graphic is that although the NID source seems to 

have more data points that the other sources, the confidence attribute was not a factor in 

determining how the data was clustered. Also, the data appears to have an even 

distribution of confidence assignments across the sources. What this could permit is the 

analysis of the data from the viewpoint that confidence level is not affected clustering of 

the data by reliability. 
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Figure 7-6: Results of Clustering - Source versus Confidence, Sources Highlighted 

 

 

Figure 7-7 depicts the results presented using sources (x-axis) and confidence (y-

axis). This form of the graph made it possible to identify that the data also has an even 

distribution of sensitivity and is again centered around the three sources. The knowledge 

that can be learned from this graphic is that the sensitivity attribute also does not affect 

the clustering of the data by reliability. 

We have seen in figure 7-4 a description of the data as to its originators, figure 7-

5 identifies patterns of reliability factors with respect to the sources, figure 7-6 confirms 

that the confidence factor for the data seems to have an even distribution among the range 

of confidence values  but shows again that the majority of the data is centered in the three 

sources previously identified, and figure 7-7 confirms that the data also has an even 

distribution of sensitivity and confirms again that the data is centered around the three 

sources. 
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Figure 7-7: Results of Clustering - Source versus Sensitivity, Sources Highlighted 

 

 

Therefore, the results of the data mining algorithm answer the suppositions in the 

following manner: 

 

How reliable is the version data?  

The data can be grouped into two groups; 1) a group (cluster) where reliability is 

low, confidence is unconfirmed, the majority source provider is NID, and the sensitivity 

of the data is SECRET, and 2) reliability is medium, confidence is validated, the source is 

primarily articles, and the sensitivity of the data is SECRET. From closer examination of 

the results, one can determine that the NID source is generally a bad choice for reliable 

data. 
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Are some sources less reliable than others? Which sources are less reliable?  

Yes. The NID, Radio, and Newswire sources are less reliable than the others. 

Given sources that are less reliable, how are they grouped by sensitivity or confidence? 

The graphs indicate an even distribution among the confidence and sensitivity 

values. 

 

7.5 Conclusion 

The experiments show one example of how data mining can be used to find 

patterns in the attribute version data. In this case, the experiments demonstrate the 

benefits of mining the attribute version metadata to gain knowledge about the version 

data. In this case, it confirmed the supposition that there are sources that are less reliable 

than others. This information can be used by analysts to generate extracts of their 

versioned data joined with the attribute version data that can be more reliable and instill a 

greater confidence with the analyst. Therefore, data mining is a viable method for gaining 

additional knowledge about the attribute versions which can be applied to the versioned 

data for further analysis. 

 

7.6 Future Work 

The Achilles heel of most data mining algorithms is the static nature by which the 

algorithms operate. Most operate only on data that remains constant. They fail to adapt 

well (if at all) to changes in the data. An algorithm that can scale and adapt (learn) would 

be the best for the types of analysis that this project will support [Dunh03].  
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Additionally, no data mining algorithms are designed to work with version data. 

An interesting research project would be to develop or modify one of the clustering 

algorithms to consider version data by generating all possible permutations of the 

versioned data joined with the attribute versions. Similarly, modifying a cluster algorithm 

to display those permutations would permit analysts to locate patterns of version data that 

adds specific value (through suppositions). This area alone would comprise a great deal 

of work and could prove very beneficial to analyzing data in versioning systems. 
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Chapter Eight - Conclusion 

 

 

 

This chapter examines the implementation of the research and supporting project, 

presents an analysis of the experiments conducted, states the conclusion and supporting 

evidence for the theoretical material presented, and provides descriptions of key areas for 

future study. 

 

8.1 Analysis of the ALV Experiment 

The supporting project for this work was an experiment to test the feasibility and 

access the implementation of the Attribute-Level Versioning (ALV) concept. Test the 

ability of the sponsor to support an endeavor that has been considered by many to be too 

risky to accomplish in a reasonable timeframe

1

. Furthermore, ALV was considered a 

technology that could not be integrated into a relational database system. 

The project as an experiment was a success. Not only was the ALV technology 

feasible, the experiments included in this work demonstrate that the ALV technologies 

have a sound foundation in theory and perform well in use. This work also shows that the 

ALV concept itself is sound and that it can be successfully integrated into a commercial 

                                                

1

 As a result, the project and the author’s professional reputation has survived several assassination 

attempts. 
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relational database system. The following section summarizes the results of all of the 

experiments conducted on the technologies included in this work. 

 

8.2 Conclusion 

The literature search has shown that the state of the technologies and theories in 

Computer Science did not include any in-depth work in the area of versioning of data in a 

relational database. Although object oriented databases can inherently support a 

versioning concept and object relational databases can support a horizontal mechanism 

for version storage, none of the database paradigms support versioning at the attribute 

level while maintaining a functional connection to traditional relational databases.  

This work demonstrates that the ALV technology can be integrated with a 

relational database system while not affecting its performance, functionality, and 

stability

2

. The benefit of adding a versioning system like ALV to a relational database 

system is that it enables scientists and analysts to prepare data for use in rigorous 

database applications, drawing from the repository of all known or predicted values. 

Therefore, ALV is a uniquely conceived idea that has merit in the relational database 

paradigm. The continued exploration of versioning capabilities and the implementation of 

ALV permits growth of a new direction in data versioning, the ability to store every 

permutation of a data’s attributes. 

                                                

2

 Pertaining to the theoretical (academic) application of theory. Commercial relational database systems 

often compromise the finer details of relational theory for the sake of mass reuse and generalization of 

functionality. Hence the persistent and growing ga p between academic rigor and industry isotropic 

applications.  
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However, simply adding a versioning mechanism to a relational database system 

is not the only challenge. Traditional relational database systems store data to maximize 

the retrieval of relational data. None of the relational database systems have storage 

mechanisms to store and retrieve version information. The integration of ALV with a 

relational database system using traditional data storage mechanisms would have required 

force-fitting versioned data into generalized and thus less efficient storage structures that 

often result in larger tables, the use of surrogate or superkeys, duplication problems, and 

complexity issues. 

The clustered version store (CVS) is the cornerstone of the ALV system. By 

demonstrating the ability to store attribute versions in a dedicated, specialized physical 

storage mechanism that utilizes a buffer management system for caching, the clustered 

version store is the foundation of a versioning system that can be integrated in a relational 

database environment. The physical store is sound and performs admirably when 

compared to the commercially available physical store available in MySQL

3

. 

The CVS would be incomplete without a mechanism to index and thus access the 

data in a time-efficient (timely) manner. The integration of the version index into the 

ALV system is therefore imperative in order to provide the speed necessary for a system 

to be considered for production use. 

This work has shown that the version index mechanism is reliable and performs 

well as demonstrated by the ability to store attribute versions in a dedicated, specialized 

physical storage mechanism and accessing the data using rapid index resolution. The 

                                                

3

 Although MySQL supports a number of physical stores, the comparisons made in this work were down 

with MyISAM because MyISAM most closely resembles that of the ALV physical store.  
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experiments and real world experience using the ALV system with the version indexing 

mechanisms demonstrate that a fast indexing mechanism is required to ensure high speed 

performance of retrieval of versioned data for a versioning system and that the version 

indexing mechanism can be supported in a relational database system. Furthermore, the 

version indexing mechanism was shown to have superior performance for retrieving an 

attribute version chain from the CVS as compared to the inherent data storage and 

indexing mechanisms in MySQL. 

Additionally, the B

2

+ and mB

2

+ trees are a unique form of B+ tree that has buffer 

management, concurrency, and transaction support built into the data structures and 

algorithms. This tight integration of these features makes the new variants of the 

venerable B+ tree viable mechanisms for increasing the performance of indexing 

mechanisms. 

The data mining experiments conducted against version metadata show how data 

mining can be used to find patterns in the attribute version data. In this case, the 

experiments demonstrate the benefits of mining the attribute version metadata to gain 

knowledge about the version data. In this case, it confirmed the supposition that some 

sources are less reliable than others. This information can be used by analysts to generate 

extracts of their versioned data joined with the attribute version data that are deemed 

more reliable and instill a greater confidence with the analyst. Therefore, data mining is a 

viable method for gaining additional knowledge about the attribute versions which can be 

applied to the versioned data for further analysis. 
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The ALV query optimizer, query tree, and query execution engine represent 

technology that demonstrates the potential of implementing such technologies in a 

production relational database system. The fact that these technologies are based on 

academic views of implementation proves once again that academic rigor can be 

translated directly to industry without compromising the “science” behind the details. As 

the experiments show, the technologies presented represent effective and efficient 

technologies for use in a versioning system. 

The analysis of modern datasets requires the use of specialized algorithms and 

storage and retrieval mechanisms to identify, deconflict and assimilate variances of 

attributes for each entity encountered. These variances, or versions of attribute values, 

contribute meaning to the evolution and analysis of the entity and its relationship to other 

entities. A new, distinct storage and retrieval mechanism will enable analysts to 

efficiently store, analyze and retrieve the attribute versions without unnecessary 

complexity or additional alternations of the original or derived dataset schemas. This 

mechanism is the ALV system. The ALV system enables the storage and retrieval of 

version information and can be used to add considerable knowledge to a versioned data 

store. All of this can be accomplished by integrating the versioning system with a 

commercial relational database system. 

 

8.3 Future Work 

The following sections summarize the areas of future work that have been 

identified in this work. While the ALV project is a success and performs well in practice, 
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there are still many small enhancements to the experimental source code needed to 

achieve a fully reliable and robust server. For example, while concurrency was a major 

design point and the technologies tested to achieve good concurrent behavior, extensive 

tests in a highly concurrent multi-user environment were not conducted. Additional tests 

are necessary to ensure that the concurrent mechanisms in the ALV technologies continue 

to operate in a dynamic environment under heavy load. 

 

8.3.1 Clustered Version Store 

Although the clustered version store performs well and outperforms the native 

storage mechanism of MySQL, there are areas that can be improved. Despite the 

tendency and practice of database system vendors to rely on the base operating system for 

file I/O support, much could be gained by developing a native I/O mechanism that 

communicates directly with the hardware. This would enable a more efficient use of disk 

space and eliminate the need to coordinate directly with the operating system. The 

drawback to this approach is that an operating system driver must be created so that the 

base operating system can communicate with the device. It would be enlightening to 

develop such a storage mechanism and compare its performance with that of native data 

stores and the data store presented here. 

On a more subtle scale, there are improvements that can be made to the clustered 

version store that may increase performance even further. For example, an active space 

reclaim process could eliminate the concern for large gaps in the file structure under 
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heavy insert and delete operations. Furthermore, an active space reclaim process would 

eliminate the need to perform periodic maintenance on the files.  

A vulnerability of the implementation of the clustered version store is that it does 

not currently have an active deadlock prevention algorithm. Additional overhead 

mechanisms may be necessary to support active deadlock recovery. 

For a more robust application of versioning, one would also consider expanding 

the buffer management subsystem to include recovery mechanisms that can recover data 

in the event of an unexpected system termination. 

Aside from the above improvements that are largely expansive in nature

4

, the 

most beneficial additional (perhaps even necessary) modification is to convert the 

implementation code to be as platform independent as possible. The system currently 

runs on a Windows-based operating system. Additional work will be necessary to convert 

some of the lower-level I/O code to a platform independent basis. Fortunately, that 

capability has already been demonstrated in the MySQL source code. 

 

8.3.2 Version Indexing 

Construction of the version index from existing data is a concern that should be 

addressed in the near future. This could be an especially important performance issue if 

the database systems that implement ALV are used for high-speed data processing. The 

technology of batch-construction of Kim [Kim01] should be investigated for 

incorporation into the version index mechanisms. 

                                                

4

 That is, they tend to make the system larger and more prone to performance and complexity issues.  
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Although the version index performed well with the ALV buffering mechanism, it 

is possible that the buffering mechanism may need to be altered once a sufficiently large 

data set is discovered. Currently, none of the large data sets tests have shown any unusual 

behavior and the index and buffer mechanism work well. Performance under these 

circumstances has been proportional to the size and complexity of the data. Further 

research will be necessary to test the cumulative effects of very large data sets on the 

version index and buffer mechanism. 

The application of the B

2

+ tree and mB

2

+ tree in the ALV system is not as 

flexible as it could be. Additional work will be necessary to provide the tools necessary to 

create alternative indexes on any given attribute value or metadata attribute within an 

attribute version. These extra tools will provide additional opportunities to tune the 

versioned database for optimal performance based on the need and intended use of the 

version system. 

While the concurrency and transaction mechanisms work well, there is no support 

for recovery. Database recovery mechanisms are designed to be able to recover the state 

of the database system should the system become unstable or crash. With a recovery 

system, such as a log-based journal, where all operations and their outcomes are stored, 

all but the most severe of system failures could be recoverable and the state of the 

database rebuilt on restart. The ALV system does not support any form of logging or 

recovery. Additional work is necessary to implement this feature into the ALV system, 

making it applicable in environments where recovery is a high priority or necessity. 
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Lastly, the B

2

+ tree and mB

2

+ tree mechanisms described above should be 

generalized for use with more traditional physical data stores. This will ensure that the 

technology is added to the collection of many successful indexing mechanisms bearing 

the legacy of Bayer and McCreight [Baye72]. 

 

8.3.3 ALV Query Optimizer and Execution Engine 

Although the cost optimization step of the ALV query optimizer is very effective 

at identifying the benefits of using indexes for locating (iterating) through a relation, the 

query optimizer could be designed to optimize or balance joins better than it does. For 

most joins, the existing strategy works well and will continue to generate near optimal 

executions. However, for those complex joins that are formed in an environment that has 

complex indexes and multi-level indexes, the cost optimization step should be modified 

to balance joins better. Once this has been accomplished, the ALV query optimizer will 

be complete and robust enough to handle any environment and use. 

The ALVExecute class can be enhanced and query execution reduced by using a 

multithreaded execution variant of the pipeline. That is, each operation in the tree could 

be executed as a separate thread, providing appropriate synchronization using 

mechanisms such as queues for preemptive and wait conditions. However, care must be 

taken to avoid deadlock and race conditions. 

One of the most important features of MySQL is the query cache [MySQ05]. The 

query cache is a mechanism that stores the results of executed queries for reuse. This 

includes storing the parsed and optimized query, but also the query results. This gives 
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MySQL the ability to respond quickly to repetitive queries and exceed the performance 

of database systems that do not cache queries. The ALV query tree can be used to 

implement a query cache. Work will need to be done to associate a result set (relation 

class) with a query tree. Fortunately, the implementation can easily be adapted for 

serialization and organization of a query cache. However, like the query tree and query 

execution, the ALV query cache will be functionally equivalent but with a distinctly 

different implementation. 

The SQL

ALV

 extensions developed to support versioning in a relational database 

system are not complete. A complete set of SQL commands would include the alter 

commands as well as enhancements to the select command for greater flexibility in 

performing complex queries. Additional development is necessary to complete the 

SQL

ALV

 commands. 

 

8.3.4 Data Mining in a Versioning Environment 

The Achilles heel of most data mining algorithms is the static nature by which the 

algorithms operate. Most operate only on data that remains constant. They fail to adapt 

well (if at all) to changes in the data. An algorithm that can scale and adapt (learn) would 

be the best for the types of analysis that this project will support [Dunh03].  

Additionally, no data mining algorithms are designed to work with version data. 

An interesting research project on the development or modification of one of the 

clustering algorithms would be to consider version data by generating all possible 

permutations of the versioned data joined with the attribute versions and clustering those 



www.manaraa.com

Bell 2005 – Attribute-Level Versioning: A Relational Mechanism fo r Version Storage and Retrieval   326  

 

permutations would permit analysts to locate patterns of version data that adds specific 

value (through suppositions). This area alone would comprise a great deal of work and 

could prove very beneficial to analyzing data in versioning systems. 

 

8.3.5 Other Areas 

One of the guiding goals for the ALV system was to include the ability to store 

attribute versions and assign temporal properties to them. While the version metadata can 

be constructed to store temporal data both using time series and time stamping (hence 

ALV support bi-temporal data), the ALV system was not designed to support temporal 

analysis. Temporal queries are more than just simple roll-up or sequence chains. 

Temporal queries involve logic that can be used to discover how values change over 

time, the values of an entity’s attributes at a specific time reference, and can even be used 

to store data that is not yet relevant

5

. Additional work would be necessary to expand the 

ALV system to process temporal queries. This can be accomplished by redesigning the 

query processor and query execution to include the syntax for and a mechanism to 

evaluate temporal query statements. Adding temporal query capabilities to ALV will 

ensure that further analysis of version data is possible with respect to time. 

Another area of interest would be to replace the MySQL query data structure with 

that of the ALV query tree and the MySQL query engine with the ALV query optimizer. 

The results should be a more efficient, robust, and maintainable system than what is 

currently available as the MySQL system. This is possible because the query tree is a 

                                                

5

 This list is by no means exhaustive. A host of many interesting temporal queries can be constructed using 

temporal logic.  
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well designed data structure that, when combined with the ALV query optimizer and 

execution engine, would permit the MySQL database system to execute queries faster. 

Furthermore, it has been shown that the ALV query tree and query optimizer can 

outperform the equivalent technologies in MySQL. However, it should be noted that 

there is a performance issue with the MySQL parser with respect to building query trees. 

This limitation will have to be overcome in order to fully replace and enhance the 

MySQL database system with ALV technologies. When complete, the ALV technologies 

could take the MySQL database system to new heights of performance. 
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Appendix A – Dataset Descriptions 

 

 

 

A.1 Introduction 

The technological challenges of a work of this size and complexity can be 

overcome with ingenuity and patience

1

. However, there is one problem that is seemingly 

very difficult to solve – locating datasets of sufficient size and complexity to demonstrate 

the benefits of one’s work. Unfortunately, the data used in this work is protected by legal 

and legislative protections that prohibit disclosure. As a result, much of the data used in 

the experiments were either borrowed from publicly available sources or contrived from 

said sources. This appendix describes the datasets used and describes the methods, 

implementation details, and the challenges and solutions concerning the data used for the 

experiments in this work.  

 

A.2 Datasets Used 

This section presents the details of each of the datasets used. This includes their 

origin, any customizations made to the data for use in the experiments, and a sample of 

each. A number of datasets were used in the development and implementation of the 

                                                

1

 Also known as the bull headed s tubbornness required of successful graduate students to carry out the task 

to its logical conclusion.  
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technologies in this work. The following table lists a description, origin, and size of each 

dataset used. 

 

Dataset Description Source Size (approx) 

Dialysis 

Facility 

Compare 

Information for research on medicare 

facilities.  

http://www.medicare.gov/

Download/DownloadDB.

asp 

100,000 entities 

Federal 

Aviation 

Admini stration 

Airmen 

Certification  

Law requires the FAA to release 

names, addresses, and ratings 

information for all airmen after the  

120th day following the date of 

enactment. This file contains the 

names, addresses, and certificate 

information of those airmen  who did 

not respond to indicate that they 

wished to withhold their address 

information.  

http://www.faa.gov/licens

es_certificates/airmen_cer

tification/releasable_airm

en_download/ 

128,000 entities 

Home Health 

Compare 

Information for research on medicare 

facilities.  

http://www.medicare.gov/

Download/DownloadDB.

asp 

4,500 entities 

Mammalian 

Reproductive 

Genetics 

(MRG) 

This database consists of genes and 

literature related to mammalian 

reproduction.  

http://mrg.genetics.washin

gton.edu/ 

200,000 entities 

Prescription 

Drug 

Assistance 

Program 

Information for research on medicare 

facilities.  

http://www.medicare.gov/

Download/DownloadDB.

asp 

35,000 entities 

Sakila  This sample DB is based on a DVD 

rental shop model. There are two 

stores and two employees. The stores 

are open 24 hours and customers can 

shop at either store. The 2 employees 

work at both stores but each is 

manager of one store. Payment is due 

at time of rental, with a $1 per day 

late fee. 

 

http://www.mysql.com 5,000 entities 

UCI Adults  This data set contains weighted 

census data extracted from the 1994 

and 1995 current population surveys 

conducted by the U.S. Census 

Bureau. 

http://www.census.gov/ 32,000 entities 

Table A-1: Datasets Used 
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A.3 Experimental Data 

This section presents the datasets used for each experiment. Subsections below 

describe each experiment arranged by chapter. 

 

A.3.1 Chapter 4 and 5 

The dataset used in these chapters was generated from one table from each of 

three of the above datasets. These datasets were; Sakila, UCI Adults, and the MRG 

databases. Each dataset was implemented as a MyISAM and InnoDB table in MySQL 

and the ALV system. To simulate the utility of the clustered version store, the data was 

modified to include a grouping attribute that represented the key association supported in 

the ALV system. To simulate random insertion, the datasets were sorted using a random 

value generated per row prior to insertion. All datasets were inserted in the same order. 

The following table depicts the statistics for the tables used. 

 

 

Customer Adults ORF 

ALV 

1,484,200 77,588,297 145,520,114 

MyISAM 

24,576 1,213,440 6,953,984 

% Diff 

60.39 63.94 20.93 

Size (Rows) 

599 32,561 201,053 

#Blocks 

369 19,395 36,403 

Avg Att/Blk 

1.6233 1.6788 5.523 

Table A-2: Statistics of Datasets Used 

 

 

A.3.1.1 Customer Table from Sakila Database 

The customer table has 599 rows with a record size of approximately 100 bytes. 

The following depicts the CREATE statements used to create the dataset and a sample of 

some of the INSERT statements used to populate the dataset.  
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A.3.1.1.1 ALV Statements 

CREATE ALV TABLE customer_alv KEY ALV_KEY integer ATTRIBUTE ( 

  ATTR varchar(15),  

  Value integer, 

  phone varchar(50), 

  active integer 

); 

 

INSERT ALV INTO customer_alv FOR Customer (ALV_KEY, ATTR, Value, phone, 

active) VALUES ( 99, 'Customer', 293, '96604821070', 1); 

INSERT ALV INTO customer_alv FOR Customer (ALV_KEY, ATTR, Value, phone, 

active) VALUES ( 412, 'Customer', 179, '866092335135', 1); 

INSERT ALV INTO customer_alv FOR Customer (ALV_KEY, ATTR, Value, phone, 

active) VALUES ( 206, 'Customer', 349, '53912826864', 1); 

INSERT ALV INTO customer_alv FOR Customer (ALV_KEY, ATTR, Value, phone, 

active) VALUES ( 343, 'Customer', 22, '161968374323', 1); 

INSERT ALV INTO customer_alv FOR Customer (ALV_KEY, ATTR, Value, phone, 

active) VALUES ( 222, 'Customer', 186, '760171523969', 1); 

 

 

A.3.1.1.2 MyISAM Statements 

CREATE TABLE customer ( 

  ALV_KEY integer, 

  ATTR varchar(15),  

  Value integer, 

  phone varchar(50), 

  active integer 

) TYPE=MyISAM ROW_FORMAT = FIXED; 

 

INSERT INTO customer VALUES (99, 'Customer', 293, '96604821070', 1); 

INSERT INTO customer VALUES (412, 'Customer', 179, '866092335135', 1); 

INSERT INTO customer VALUES (206, 'Customer', 349, '53912826864', 1); 

INSERT INTO customer VALUES (343, 'Customer', 22, '161968374323', 1); 

INSERT INTO customer VALUES (222, 'Customer', 186, '760171523969', 1); 

 

The row format variable was used to prevent packing. Packing is a form of data 

compression that is effective in reducing the amount of disk space used to store data. This 

feature was not relevant for use in the experiments. 
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A3.1.1.3 InnoDB Statements 

CREATE TABLE customer_i ( 

  ALV_KEY integer, 

  ATTR varchar(15),  

  Value integer, 

  phone varchar(50), 

  active integer 

) TYPE=INNODB; 

 

INSERT INTO customer_i VALUES (99, 'Customer', 293, '96604821070', 1); 

INSERT INTO customer_i VALUES (412,'Customer', 179, '866092335135', 1); 

INSERT INTO customer_i VALUES (206, 'Customer', 349, '53912826864', 1); 

INSERT INTO customer_i VALUES (343, 'Customer', 22, '161968374323', 1); 

INSERT INTO customer_i VALUES (222,'Customer', 186, '760171523969', 1); 

 

 

A.3.1.2 Adults Table from UCI Adults Database 

The adults table has 32,561 rows with a record size of approximately 85 bytes. 

The following depicts the CREATE statements used to create the dataset and a sample of 

some of the INSERT statements used to populate the dataset.  

 

A.3.1.2.1 ALV Statements 

CREATE ALV TABLE adults_alv KEY ALV_KEY integer ATTRIBUTE ( 

  `ALV_KEY` INTEGER, 

  `ATTR` varchar(30), 

  `VALUE` integer, 

  `Education` varchar(30), 

  `Class` varchar(10) 

); 

 

INSERT ALV INTO adults_alv FOR ADULT (ALV_KEY, ATTR, VALUE, EDUCATION, 

CLASS) VALUES (20175,'Adult',77516,' Bachelors',' <=50K'); 

INSERT ALV INTO adults_alv FOR ADULT (ALV_KEY, ATTR, VALUE, EDUCATION, 

CLASS) VALUES (4761,'Adult',83311,' Bachelors',' <=50K'); 

INSERT ALV INTO adults_alv FOR ADULT (ALV_KEY, ATTR, VALUE, EDUCATION, 

CLASS) VALUES (21569,'Adult',215646,' HS-grad',' <=50K'); 

INSERT ALV INTO adults_alv FOR ADULT (ALV_KEY, ATTR, VALUE, EDUCATION, 

CLASS) VALUES (14917,'Adult',234721,' 11th',' <=50K'); 

INSERT ALV INTO adults_alv FOR ADULT (ALV_KEY, ATTR, VALUE, EDUCATION, 

CLASS) VALUES (8652,'Adult',338409,' Bachelors',' <=50K'); 
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A.3.1.2.2 MyISAM Statements 

CREATE TABLE adults ( 

  `ALV_KEY` INTEGER, 

  `ATTR` varchar(30), 

  `VALUE` integer, 

  `Education` varchar(30), 

  `Class` varchar(10) 

) TYPE=MyISAM ROW_FORMAT = FIXED; 

 

INSERT INTO `adults` VALUES (20175,'Adult',77516,' Bachelors',' 

<=50K'); 

INSERT INTO `ADULTS` VALUES (4761,'Adult',83311,' Bachelors',' <=50K'); 

INSERT INTO `ADULTS` VALUES (21569,'Adult',215646,' HS-grad',' <=50K'); 

INSERT INTO `ADULTS` VALUES (14917,'Adult',234721,' 11th',' <=50K'); 

INSERT INTO `ADULTS` VALUES (8652,'Adult',338409,' Bachelors',' 

<=50K'); 

 

The row format variable was used to prevent packing. Packing is a form of data 

compression that is effective in reducing the amount of disk space used to store data. This 

feature was not relevant for use in the experiments. 

 

A3.1.2.3 InnoDB Statements 

CREATE TABLE adults_i ( 

  `ALV_KEY` INTEGER, 

  `ATTR` varchar(30), 

  `VALUE` integer, 

  `Education` varchar(30), 

  `Class` varchar(10) 

) TYPE=INNODB; 

 

INSERT INTO `adults_i` VALUES (20175,'Adult',77516,' Bachelors',' 

<=50K'); 

INSERT INTO `ADULTS_I` VALUES (4761,'Adult',83311,' Bachelors',' 

<=50K'); 

INSERT INTO `ADULTS_I` VALUES (21569,'Adult',215646,' HS-grad',' 

<=50K'); 

INSERT INTO `ADULTS_I` VALUES (14917,'Adult',234721,' 11th',' <=50K'); 

INSERT INTO `ADULTS_I` VALUES (8652,'Adult',338409,' Bachelors',' 

<=50K'); 
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A.3.1.3 ORF Table from MRG Database 

The ORF table has 201,053 rows with a record size of approximately 100 bytes. 

The following depicts the CREATE statements used to create the dataset and a sample of 

some of the INSERT statements used to populate the dataset.  

 

A.3.1.3.1 ALV Statements 

CREATE ALV TABLE `orf_alv` KEY ALV_KEY INTEGER ATTRIBUTE ( 

  `ATTR` varchar(12), 

  `Value` varchar(100), 

  `GeneCount` int(11)  

); 

 

INSERT ALV INTO orf_alv FOR Zygote (`ALV_KEY`, `ATTR`, `Value`, 

`GeneCount`) VALUES (1,'Zygote','MGI:2180337',25); 

INSERT ALV INTO orf_alv FOR Zygote (`ALV_KEY`, `ATTR`, `Value`, 

`GeneCount`) VALUES (1,'Zygote','Zar1',26); 

INSERT ALV INTO orf_alv FOR Zygote (`ALV_KEY`, `ATTR`, `Value`, 

`GeneCount`) VALUES (1,'Zygote','zygote arrest 1',20); 

INSERT ALV INTO orf_alv FOR Zygote (`ALV_KEY`, `ATTR`, `Value`, 

`GeneCount`) VALUES (18,'Zygote','03B03R',26); 

INSERT ALV INTO orf_alv FOR Zygote (`ALV_KEY`, `ATTR`, `Value`, 

`GeneCount`) VALUES (18,'Zygote','G48145',27); 

 

A.3.1.3.2 MyISAM Statements 

CREATE TABLE `orf` ( 

  `ALV_KEY` int(11) default NULL, 

  `ATTR` varchar(12) default 'Zygote', 

  `Value` varchar(100) default NULL, 

  `GeneCount` int(11) default NULL 

) ENGINE=MyISAM ROW_FORMAT = FIXED; 

 

INSERT INTO `orf` (`ALV_KEY`, `ATTR`, `Value`, `GeneCount`) VALUES 

(1,'Zygote','MGI:2180337',25); 

INSERT INTO `orf` (`ALV_KEY`, `ATTR`, `Value`, `GeneCount`) VALUES 

(1,'Zygote','Zar1',26); 

INSERT INTO `orf` (`ALV_KEY`, `ATTR`, `Value`, `GeneCount`) VALUES 

(1,'Zygote','zygote arrest 1',20); 

INSERT INTO `orf` (`ALV_KEY`, `ATTR`, `Value`, `GeneCount`) VALUES 

(18,'Zygote','03B03R',26); 

INSERT INTO `orf` (`ALV_KEY`, `ATTR`, `Value`, `GeneCount`) VALUES 

(18,'Zygote','G48145',27); 
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The row format variable was used to prevent packing. Packing is a form of data 

compression that is effective in reducing the amount of disk space used to store data. This 

feature was not relevant for use in the experiments. 

 

A3.1.3.3 InnoDB Statements 

CREATE TABLE `orf_i` ( 

  `ALV_KEY` int(11) default NULL, 

  `ATTR` varchar(12) default 'Zygote', 

  `Value` varchar(100) default NULL, 

  `GeneCount` int(11) default NULL 

) TYPE=INNODB; 

 

INSERT INTO `orf_i` (`ALV_KEY`, `ATTR`, `Value`, `GeneCount`) VALUES 

(1,'Zygote','MGI:2180337',25); 

INSERT INTO `orf_i` (`ALV_KEY`, `ATTR`, `Value`, `GeneCount`) VALUES 

(1,'Zygote','Zar1',26); 

INSERT INTO `orf_i` (`ALV_KEY`, `ATTR`, `Value`, `GeneCount`) VALUES 

(1,'Zygote','zygote arrest 1',20); 

INSERT INTO `orf_i` (`ALV_KEY`, `ATTR`, `Value`, `GeneCount`) VALUES 

(18,'Zygote','03B03R',26); 

INSERT INTO `orf_i` (`ALV_KEY`, `ATTR`, `Value`, `GeneCount`) VALUES 

(18,'Zygote','G48145',27); 

 

A.3.2 Chapter 6 

The dataset used in this chapter was taken from the Airmen database. The foreign 

pilot table was reconstructed as a versioned table representing clusters of the original 

data. These clusters were formed by assigning an arbitrary grouping value (the 

ALV_KEY) to each row. A single attribute was used to simulate a versioned table (Pilot). 

There were a total of 85 attribute versions (rows) created. Each row is approximately 180 

bytes. The following depicts the CREATE statement used to create the dataset and a 

sample of some of the INSERT statements used to populate the dataset. 
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This dataset was used solely for the testing of the query processing technologies. 

A copy of this table was constructed in a MySQL table for use in comparing the 

performance of the ALV query processor to that of MySQL. The following depicts the 

CREATE statement used to create the dataset and a sample of some of the INSERT 

statements used to populate the dataset. 

 

A.3.2.1 ALV Statements 

CREATE ALV TABLE `forcert_alv` KEY ALV_KEY varchar(8) ATTRIBUTE( 

  `ATTR` varchar(12), 

  `FIRST_NAME` varchar(30), 

  `LAST_NAME` varchar(30), 

  `CERTIFICATE_TYPE` varchar(1), 

  `CERTIFICATE_LEVEL` varchar(1), 

  `CERTIFICATE_EXP` varchar(8), 

  `RATINGS` varchar(99) 

); 

 

INSERT INTO `forcert_alv` FOR Pilot (ALV_KEY,  FIRST_NAME, LAST_NAME, 

CERTIFICATE_TYPE, CERTIFICATE_LEVEL, CERTIFICATE_EXP, RATINGS) VALUES  

('A1817736','Pilot', 'DAVID GEORGE', 'STAVELEY', 'F', '', '06302005', 

'F/ASE'); 

INSERT INTO `forcert_alv` FOR Pilot (ALV_KEY,  FIRST_NAME, LAST_NAME, 

CERTIFICATE_TYPE, CERTIFICATE_LEVEL, CERTIFICATE_EXP, RATINGS) VALUES 

('A1817736','DAVID GEORGE', 'STAVELEY', 'G', '' ,'' ,'G/INST'); 

INSERT INTO `forcert_alv` FOR Pilot (ALV_KEY,  FIRST_NAME, LAST_NAME, 

CERTIFICATE_TYPE, CERTIFICATE_LEVEL, CERTIFICATE_EXP, RATINGS) VALUES 

('A1817736','DAVID GEORGE', 'STAVELEY', 'M', '', '', 'M/AIRFR'); 

INSERT INTO `forcert_alv` FOR Pilot (ALV_KEY,  FIRST_NAME, LAST_NAME, 

CERTIFICATE_TYPE, CERTIFICATE_LEVEL, CERTIFICATE_EXP, RATINGS) VALUES 

('A1817802','ATHANASIOS CONST', 'STAVROPOULOS', 'Y', 'Y', '', 

'Y/ASEL'); 

INSERT INTO `forcert_alv` FOR Pilot (ALV_KEY,  FIRST_NAME, LAST_NAME, 

CERTIFICATE_TYPE, CERTIFICATE_LEVEL, CERTIFICATE_EXP, RATINGS) VALUES 

('A1817809','PETER STELIOU', 'STAVRINIDES', 'Y', 'Y', '', 'Y/ASEL'); 

 

A.3.2.2 MyISAM Statements 

CREATE TABLE forcert ( 

  UNIQUE_NO char(8) default NULL, 

  FIRST_NAME char(30) default NULL, 

  LAST_NAME char(30) default NULL, 

  CERTIFICATE_TYPE char(1) default NULL, 
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  CERTIFICATE_LEVEL char(1) default NULL, 

  CERTIFICATE_EXP char(8) default NULL, 

  RATINGS char(99) default NULL 

) TYPE=MyISAM ROW_FORMAT = FIXED; 

 

INSERT INTO forcert VALUES ('UNIQUE N', 'FIRST NAME', 'LAST NAME', 'T', 

'L', 'EXPIRE D', 'RATING1'); 

INSERT INTO forcert VALUES ('A0000053', 'JESUS ALBERTO', 'DIAZ', 'P', 

'A', '', 'A/AMEL'); 

INSERT INTO forcert VALUES ('A0000053', 'JESUS ALBERTO', 'DIAZ', 'Y', 

'Z', '', 'Z/ASEL'); 

INSERT INTO forcert VALUES ('A0000130', 'JUERGEN F P', 'HOPPE', 'Y', 

'Y', '', 'Y/ASEL'); 

INSERT INTO forcert VALUES ('A0000133', 'JAMES HARRY', 'SEVERNS', 'G', 

'', '', 'G/ADV'); 

 

The row format variable was again used to prevent packing.  

 

A.3.3 Chapter 7 

The dataset used in this chapter was more difficult to create than the ones used in 

previous chapters. Since the subject of Chapter 7 is data mining, the dataset used must be 

of sufficient complexity and uniformity to test the usefulness of a data mining algorithm. 

As a result, a program was created to generate the dataset.  

This program was written to use the FAA Airmen database as a basis for creating 

a dataset with versioning information. The names of the pilots from the original dataset 

were changed using a name generator drawn from common surnames and male first 

names. The pool of surnames totaled 88,800 names and the pool of first names totaled 

1,128 names. The version information generated were attribute versions for the alias and 

phone number attributes from the original dataset. The attribute versions used are shown 

in the following SQL statement. 

This dataset was used solely for the testing of the application of data mining 

technologies to evaluate and quantify the version information. The following depicts the 
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CREATE statement used to create the dataset and a sample of some of the INSERT 

statements used to populate the dataset. 

 

CREATE ALV TABLE `airmen_alv` KEY ALV_KEY varchar(8) ATTRIBUTE( 

  `ATTR` varchar(12), 

  `VALUE` varchar(40), 

  `RELIABILITY` varchar(20), 

  `CONFIDENCE` varchar(20), 

  `SOURCE` varchar(10), 

  `SENSITIVITY` varchar(20) 

); 

 

 

The metadata lists used to generate this dataset is shown in the table below.  

 

Metadata Values 

Source 

{NID, SGC, PFJ, JPF, Newswire, TV, Radio, Article, Reference} 

Reliability 

{Unknown, Low, Medium, High} 

Confidence 

{Unconfirmed, Confirmed, Validated, Fact}  

Sensitivity

2

 

{Unclassified, Confidential, Secret} 

Table A-2: Metadata Values Used 

 

 

The following describes the algorithm used to generate the dataset: 

for each entity 

 select attributes for versioning 

 for each attribute selected 

  generate 0-10 attribute versions  

   for each attribute version generated 

    generate a random value from lists 

    generate meta data values from list 

   next attribute version 

 next attribute 

                                                

2

 Despite the inclusion of a sensitivity or classification attribute, none of the data used in this work is 

classified. All data is either public accessib le or manufactured to represent similar data.  
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next entity 

 

The resulting dataset contained approximately 122,000 attribute versions. 
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A.4 Challenges and Solutions 

The Attribute-Level Versioning (ALV) system provides a versioning mechanism 

for use in a traditional relational database system. The data that ALV stores is in the form 

of an attribute, its value, and associated metadata (called an attribute version). Since ALV 

is an entirely new concept and its implementation unique, no datasets are available with 

which to test or conduct experiments. Thus, the datasets had to be contrived. 

These contrivances were designed to provide realistic properties to the data. A 

small program was used to create the datasets using as input the original dataset as 

described above. This program used sets of terms and possible values generating a 

random attribute version for a random number of iterations for a random set of entities. 

While this method may generate data that is bound by the sets from which the values are 
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drawn, it does provide a reasonable manufactured dataset with which to demonstrate the 

ALV technologies. 

In fact, observations of existing real-world datasets show that the distribution of 

duplicate values and collisions during dataset merging is an approximately random event. 

In the live data, it is not an uncommon event to have a few entities with a range of 2 to 12 

attribute versions for 4 or fewer attributes. Those datasets that are truly duplicates 

containing alternative views of all attributes for all entities are rare. Thus, the 

mechanisms by which the contrived data was formed depicts the types and seeding factor 

that are expected in a production use of the ALV system. 

Another area of concern was the creation of a mechanism by which the ALV data 

can be exported to SQL statements. An application called ALVDump was created to 

generate a text file containing INSERT statements for all of the data in the ALV data 

store. The application will also generate the CREATE statement as an option. This 

application is useful in that it permits database professionals to export all of the data to a 

script, delete the version store, and then recreate it using the script. This has the side 

benefit that the version store is created with all of the attribute chains in order with 

unused blocks are removed. 

 

A.5 Conclusion 

While finding sufficient data was a very challenging problem, the data presented 

in this appendix describes existing and created datasets that meet the minimal 

requirements for demonstrating the benefits of this work. 
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Appendix B – Modifying MySQL for use with ALV 

 

 

 

B.1 Introduction 

This section describes the methods, implementation details, and the challenges 

and solutions in integrating ALV technologies into the MySQL server. 

 

B.2 Development Approach 

The purpose of the supporting project for this work was to create a fully 

functional versioning system implemented in an operational database management 

system.  

 

Goals 

 Minimize changes to the MySQL code base so that the operation of the original 

MySQL functionality is not impeded. 

 Integrate the ALV functionality in such a way that it becomes a seamless 

execution when mixing normal and ALV commands. 

 Exploit the best theories and invent advanced techniques for solving the 

versioning problem. 
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 Provide a robust set of operations that permit administrators to administer the 

database server using traditional database maintenance operations, e.g., backup, 

restore, dump, etc. 

 

B.3 Modifications to MySQL Source Files 

The primary goal of the integration of the ALV technologies with the MySQL 

database core was to minimize the number of changes necessary to the MySQL code and 

to prohibit modification of any of the MySQL functions. Fortunately, only seven source 

files were changed, and many of the changes were simply minor additions to the code. 

The most significant changes were those to the sql_yacc.yy file. A complete listing of all 

of the files changed and a brief description of the changes are shown in the table below. 

 

Source File Line* Description 

lex.h 

0052 This section identifies the internal code symbols and values for 

the ALV tokens. 

Mysql_priv.h 

0026 A reference to the ALVExecute class. 

mysqld.cpp 

0017 

#include “alv_manager.h” 

 

3377 This section calls the ALV_Manager and sets the path to the 

ALV data stores. 

 

6856 This section adds the ALV version number to the MySQL 

version number. 

Sql_class.h 

1208 This section defines the ALV_Manager pointer for each thread. 

Sql_lex.h 

0054  This section captures the enumerations for the ALV command 

tokens. 

Sql_parse.cpp 

0024 

#include "ALV_sql_parse.h" 

 

0191 Begin ALV transaction hook. 

 

1172 End ALV transaction hook for the case where the session times 

out or disconnects unexpectedly. 

 

1401 End ALV transaction hook. 

 

1412 End ALV transaction hook. 

 

1420 Begin ALV transaction hook. 

 

1431 End ALV transaction hook. 
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Source File Line* Description 

 

3387 This section is the main modification or plugin for the ALV 

code. It establishes the connection for activating the parsed 

ALV commands. 

Sql_yacc.yy 

0175 This section defines the tokens for the ALV commands. 

 1126 

This section captures (parses) the CREATE ALV TABLE 

statement. 

 2549 This section captures (parses) the subparts of the CREATE 

ALV TABLE statement. 

 3762 

This section captures (parses) the RESTORE ALV statement. 

 3786 

This section captures (parses) the BACKUP ALV statement. 

 4050 

This section captures (parses) the SELECT ALV statement. 

 4140 

This section captures (parses) the sub parts of the SELECT 

ALV statement. 

 5619 

This section captures (parses) the where clause for the SELECT 

ALV statement. 

 5952 

This section captures (parses) the DROP ALV statement. 

 6089 

This section captures (parses) the INSERT ALV statement. 

 6260 

This section captures (parses) the UPDATE ALV statement. 

 6340 

This section captures (parses) the DELETE ALV statement. 

 6372 

This section captures (parses) the subparts of the DELETE 

ALV statement. 

 6458 

This section captures (parses) the SHOW ALV statements. 

 6805 

This section captures (parses) the EXPLAIN (DESCRIBE) 

ALV statements. 

Table B-1: Changes to MySQL Source Files 

*Line numbers are approximate  

 

 

B.3.1 ALV Technologies Source Files 

The source files that make up the ALV technologies can be categorized as 

follows: 

 Data – these files contain classes, structures, and methods that manipulate the data 

in the internal data representation. They provide an abstract layer over the lower-

level file I/O classes. 
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 Execution – these files contain classes and methods that perform query 

operations. 

 File I/O – these files contain classes and methods used to perform low-level file 

input and output operations. 

 Utility – these files contain general methods and structures for common or widely 

reused features. 

 

The table below lists all of the source files including the category and brief 

description of each. 

 

Source File† Category Description 

ALV.cpp 

Utility Includes general utility functions, error 

message handling. 

ALV_Manager.cpp 

Execution Manages threading controlled access to the 

main ALV data storage files and the table-level 

locks for the ALV system. 

ALV_sql_parse.cpp 

Execution Receives control from the parser providing the 

execution code for the SQL

ALV

 commands. 

ALVDataFile.cpp 

File I/O Manages the low-level access for the ALV 

database tables. 

ALVExecute.cpp 

Execution Executes the query tree. 

ALVRecordFile.cpp 

File I/O Responsible for managing the low-level access 

for the ALV records within blocks. 

ALVString.h 

Utility Standard C-style string encapsulates a char 

pointer and deletes it upon destruction.  

Attribute.cpp 

Data Abstracts an attribute for use in internal 

representation of ALV data. 

bptBase.h 

Indexing Serves as the base class for the B+Tree indexes 

and their ALV derivatives. 

bptBlockMgr.cpp 

Indexing Implements an in-memory buffer management 

system. 

bptDataFile.cpp 

File I/O Manages the low-level access for the ALV 

indexes within blocks. 

bptFreeBlockQueue.cpp 

Indexing Implements an in-memory free block queue for 
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Source File† Category Description 

deleted blocks of data. No .h file. 

bptHash.cpp 

Indexing Implements an in-memory hash table for 

storing keys in the multiple key indexes. 

bptKeyAndValueTypes.h 

Indexing Defines various simple data types to be key 

and value template parameters for bptIndex. 

No .cpp file. 

bptNode.cpp 

Indexing Structures an MBlock as a B+ tree node.  

Expression.cpp 

Data Contains the expressions for a query. 

Hash.cpp 

Indexing Implements a HashTable, using Quadratic 

Probing when a hash clash occurs. 

MetaData.cpp 

Data Manages the meta data name, id, and data type 

used in ALVRecordFile. 

QueryTree.cpp 

Execution Contains the internal representation of the 

query to be executed. Provides methods for 

optimizing and forming and inspecting the 

query tree. 

Queue.h 

Utility Contains a template for a FIFO queue. Uses the 

standard template declaration and supports 

operations for Put, Get, Empty, QueueSize, 

and Print. 

Relation.cpp 

Data Encapsulates the relational notion of a table. 

Tuple.cpp 

Data Encapsulates the relational notion of a tuple. 

Supports operations on the tuple for 

manipulating the data and order of the 

attributes. 

ValueBucket.cpp 

Data Provides a hashed storage area for storing and 

comparing tuple values based on type. 

Table B-2: List of ALV Source Files 

†All cpp files have corresponding h files except w here noted. 

 

 

B.3.2 Challenges and Solutions 

Aside from the technological challenges presented in previous chapters, there 

were many challenges in integrating the ALV technologies into an operational platform. 

Perhaps the most challenging was modifying the MySQL parser to recognize the new 

SQL

ALV

 commands. Although not precisely a complex or new implementation language, 

modification of the yacc files required careful attention to the original developers’ intent. 
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The biggest hurdle was where to change the parser in order to capture the SQL

ALV

 

commands. The solution involved placing the new commands at the top of each of the 

parser command definitions. This permitted intercepting the flow of the parser in order to 

redirect the query processor to execute the ALV commands directly.  

The most frequent and least trivial challenge of all was keeping up with the 

constant changes in the MySQL code base. Since MySQL is an open source product and 

the ALV technologies were developed without participating in the evolution of the 

MySQL code base, the frequency of upgrades was unpredictable. In order to keep up with 

the feature changes, the integration of the ALV technologies required reinserting the 

modifications to the seven source files with each upgrade of the MySQL code base. To 

avoid repeating this process, it was decided to upgrade the MySQL code base on major 

and minor updates only, e.g., 4.0 to 4.1 or 4.X to 5.0. However, should the ALV 

technology become mainstream and a permanent feature of MySQL, the ALV source 

code and all technologies will require merging with the community-wide source 

repository. There are three possibilities available for the sponsor of this work to consider 

in order to achieve this goal; 1) continue to maintain the ALV technologies apart from the 

MySQL code base and perform integration with each major or minor release, 2) honor 

the entirety of the GNU license and turn over the ALV technologies to MySQL AB for 

incorporation into the main code base, or 3) purchase extended support from MySQL AB 
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and provide the ALV technologies as a sole propriety act

1

. Naturally, the author will 

strive to encourage the second option with due enthusiasm. 

The challenge that presented the least amount of effort but required a considerable 

amount of time was examining the MySQL code base and discovering the meaning, 

layout, and use of the various internal data representations. As stated in several MySQL 

documents, the code suffers from “Genius Intuition

2

” which renders the code 

indecipherable to all but the most informed and advanced C++ programmers. This 

challenge was eventually overcome by sheer determination and many, many visits to 

MySQL blogs and message forums. 

The challenge that presented the most limiting constraints was the choice of the 

operating system a basis for the solution. Although mandated by the project sponsors, 

implementing the ALV technologies on the Microsoft Windows operating system 

platform presented a number of significant problems that resulted in extra work and some 

limited functionality. MySQL supports the Windows operating system by providing both 

binary installation and execution files as well as the source code for compilation. Most 

developer forums dedicated to MySQL warn of these problems and attempt to steer 

experimenters away from using the Windows platform for development. This due to the 

unfortunate fact that many of the utilities created to manage the MySQL source code are 

simply unavailable or do not have an analogous operation. The implementation and 

                                                

1

 In other words, pay someone to maintain the code but not share it with the community. This is an option 

that the sponsor is very likely to take.  

2

 A self imposed description by the code authors themselves. Th is phenomena isn’t new. It is an all -to-

common occurrence among the C and C++ community. It seems that there are two classes of developers 

who produce this type of code. Those that do so out of ignorance, arrogance, or intolerance and those that 

do so in the pursuit of refined code. Fortunately, the developers at MySQL AB are of the latter variety.  
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integration of the ALV technologies was achieved with great success despite the 

limitations of the Windows platform. However, one must consider how much more 

productive

3

 this project would have been if developed on the MySQL native/preferred 

platform, Linux. 

 

B.4 Conclusion 

The MySQL system has proven to be difficult to learn and troublesome to 

diagnose when things go awry. However, it is clear that once one has mastered the 

intricacies of the MySQL genius-inspired code, the system is very accommodating and 

has the promise of being perhaps the first and best platform for experimental database 

work. The ALV system works well within the confines of the MySQL server and has 

shown no signs of violating any of the native MySQL features or performance. Overall, 

the integration of the experimental versioning code has been very successful. 

                                                

3

 The reduction in gnashing of teeth and follicle depletion would have been reward enough to warrant 

developing this project on Linux.  
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